Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Biol ; : 168665, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878854

ABSTRACT

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.

2.
J Vis Exp ; (199)2023 09 29.
Article in English | MEDLINE | ID: mdl-37843272

ABSTRACT

Solute carriers (SLCs) are membrane transporters that import and export a range of endogenous and exogenous substrates, including ions, nutrients, metabolites, neurotransmitters, and pharmaceuticals. Despite having emerged as attractive therapeutic targets and markers of disease, this group of proteins is still relatively underdrugged by current pharmaceuticals. Drug discovery projects for these transporters are impeded by limited structural, functional, and physiological knowledge, ultimately due to the difficulties in the expression and purification of this class of membrane-embedded proteins. Here, we demonstrate methods to obtain high-purity, milligram quantities of human SLC transporter proteins using codon-optimized gene sequences. In conjunction with a systematic exploration of construct design and high-throughput expression, these protocols ensure the preservation of the structural integrity and biochemical activity of the target proteins. We also highlight critical steps in the eukaryotic cell expression, affinity purification, and size-exclusion chromatography of these proteins. Ultimately, this workflow yields pure, functionally active, and stable protein preparations suitable for high-resolution structure determination, transport studies, small-molecule engagement assays, and high-throughput in vitro screening.


Subject(s)
Membrane Transport Proteins , Solute Carrier Proteins , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Solute Carrier Proteins/chemistry , Solute Carrier Proteins/metabolism , Drug Discovery/methods , High-Throughput Screening Assays , Membrane Proteins/metabolism , Pharmaceutical Preparations
4.
Nat Commun ; 10(1): 2032, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31048734

ABSTRACT

The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers.


Subject(s)
Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Protein Multimerization , Protein Structure, Quaternary , Sulfate Transporters/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Deinococcus , Electron Spin Resonance Spectroscopy , Mutagenesis, Site-Directed , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SLC4A Proteins/chemistry , SLC4A Proteins/metabolism , Sulfate Transporters/chemistry , Sulfate Transporters/genetics , Sulfate Transporters/isolation & purification
5.
Bio Protoc ; 7(3): e2116, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-34458442

ABSTRACT

The SLC26 or SulP proteins constitute a large family of anion transporters that are ubiquitously expressed in pro- and eukaryotes. In human, SLC26 proteins perform important roles in ion homeostasis and malfunctioning of selected members is associated with diseases. This protocol details the production and crystallization of a prokaryotic SLC26 homolog, termed SLC26Dg, from Deinococcus geothermalis. Following these instructions we obtained well-folded and homogenous material of the membrane protein SLC26Dg and the nanobody Nb5776 that enabled us to crystallize the complex and determine its structure ( Geertsma et al., 2015 ). The procedure may be adapted to purify and crystallize other membrane protein complexes.

6.
Biol Chem ; 398(2): 165-174, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27865089

ABSTRACT

Solute carriers from the SLC4, SLC23, and SLC26 families are involved in pH regulation, vitamin C transport and ion homeostasis. While these families do not share any obvious sequence relationship, they are united by their unique and novel architecture. Each member of this structural class is organized into two structurally related halves of seven transmembrane segments each. These halves span the membrane with opposite orientations and form an intricately intertwined structure of two inverted repeats. This review highlights the general design principles of this fold and reveals the diversity between the different families. We discuss their domain architecture, structural framework and transport mode and detail an initial transport mechanism for this fold inferred from the recently solved structures of different members.


Subject(s)
Cell Membrane/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Repetitive Sequences, Amino Acid , Animals , Biological Transport , Humans , Protein Domains , Protein Multimerization
8.
Nat Struct Mol Biol ; 22(10): 803-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26367249

ABSTRACT

The SLC26 family of membrane proteins combines a variety of functions within a conserved molecular scaffold. Its members, besides coupled anion transporters and channels, include the motor protein Prestin, which confers electromotility to cochlear outer hair cells. To gain insight into the architecture of this protein family, we characterized the structure and function of SLC26Dg, a facilitator of proton-coupled fumarate symport, from the bacterium Deinococcus geothermalis. Its modular structure combines a transmembrane unit and a cytoplasmic STAS domain. The membrane-inserted domain consists of two intertwined inverted repeats of seven transmembrane segments each and resembles the fold of the unrelated transporter UraA. It shows an inward-facing, ligand-free conformation with a potential substrate-binding site at the interface between two helix termini at the center of the membrane. This structure defines the common framework for the diverse functional behavior of the SLC26 family.


Subject(s)
Anion Transport Proteins/chemistry , Deinococcus/genetics , Fumarates/metabolism , Models, Molecular , Multigene Family/genetics , Anion Transport Proteins/metabolism , Base Sequence , Chromatography, Gel , Cloning, Molecular , Crystallography, X-Ray , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Fluorescence , Molecular Sequence Data , Open Reading Frames/genetics , Polymerase Chain Reaction , Protein Conformation , Selenomethionine , Sequence Analysis, DNA
9.
Biosci Rep ; 32(5): 501-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22716305

ABSTRACT

Light is an important environmental signal for all organisms on earth because it is essential for physiological signalling and the regulation of most biological systems. Halophiles found in salt-saturated ponds encode various archaeal rhodopsins and thereby harvest various wavelengths of light either for ion transportation or as sensory mediators. HR (halorhodopsin), one of the microbial rhodopsins, senses yellow light and transports chloride or other halides into the cytoplasm to maintain the osmotic balance during cell growth, and it exists almost ubiquitously in all known halobacteria. To date, only two HRs, isolated from HsHR (Halobacterium salinarum HR) and NpHR (Natronomonas pharaonis HR), have been characterized. In the present study, two new HRs, HmHR (Haloarcula marismortui HR) and HwHR (Haloquadratum walsbyi HR), were functionally overexpressed in Escherichia coli, and the maximum absorbance (λmax) of the purified proteins, the light-driven chloride uptake and the chloride-binding affinity were measured. The results showed them to have similar properties to two HRs reported previously. However, the λmax of HwHR is extremely consistent in a wide range of salt/chloride concentrations, which had not been observed previously. A structural-based sequence alignment identified a single serine residue at 262 in HwHR, which is typically a conserved alanine in all other known HRs. A Ser262 to alanine replacement in HwHR eliminated the chloride-independent colour tuning, whereas an Ala246 to serine mutagenesis in HsHR transformed it to have chloride-independent colour tuning similar to that of HwHR. Thus Ser262 is a key residue for the mechanism of chloride-dependent colour tuning in HwHR.


Subject(s)
Chlorides/metabolism , Halobacteriaceae/chemistry , Halorhodopsins/chemistry , Halorhodopsins/metabolism , Serine/chemistry , Alanine/chemistry , Amino Acid Sequence , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Chlorides/chemistry , Color , Escherichia coli/genetics , Haloarcula marismortui/chemistry , Halorhodopsins/genetics , Light , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrophotometry, Ultraviolet
10.
J Bacteriol ; 192(22): 5866-73, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20802037

ABSTRACT

Microbial rhodopsins, a diverse group of photoactive proteins found in Archaea, Bacteria, and Eukarya, function in photosensing and photoenergy harvesting and may have been present in the resource-limited early global environment. Four different physiological functions have been identified and characterized for nearly 5,000 retinal-binding photoreceptors, these being ion transporters that transport proton or chloride and sensory rhodopsins that mediate light-attractant and/or -repellent responses. The greatest number of rhodopsins previously observed in a single archaeon had been four. Here, we report a newly discovered six-rhodopsin system in a single archaeon, Haloarcula marismortui, which shows a more diverse absorbance spectral distribution than any previously known rhodopsin system, and, for the first time, two light-driven proton transporters that respond to the same wavelength. All six rhodopsins, the greatest number ever identified in a single archaeon, were first shown to be expressed in H. marismortui, and these were then overexpressed in Escherichia coli. The proteins were purified for absorption spectra and photocycle determination, followed by measurement of ion transportation and phototaxis. The results clearly indicate the existence of a proton transporter system with two isochromatic rhodopsins and a new type of sensory rhodopsin-like transducer in H. marismortui.


Subject(s)
Archaeal Proteins/genetics , Haloarcula marismortui/physiology , Rhodopsin/metabolism , Biological Transport , Cloning, Molecular , Escherichia coli , Gene Expression , Gene Expression Profiling , Haloarcula marismortui/genetics , Light , Movement , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsin/isolation & purification , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...