Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
iScience ; 26(8): 107369, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37539026

ABSTRACT

Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is an aggressive lymphoid malignancy with a poor prognosis and lacks standard treatment. Targeted therapies are urgently needed. Here we systematically investigated the druggable mechanisms through chemogenomic screening and identified that Bcl-xL-specific BH3 mimetics effectively induced ENKTL cell apoptosis. Notably, the specific accumulation of Bcl-xL, but not other Bcl-2 family members, was verified in ENKTL cell lines and patient tissues. Furthermore, Bcl-xL high expression was shown to be closely associated with worse patient survival. The critical role of Bcl-xL in ENKTL cell survival was demonstrated utilizing selective inhibitors, genetic silencing, and a specific degrader. Additionally, the IL2-JAK1/3-STAT5 signaling was implicated in Bcl-xL dysregulation. In vivo, Bcl-xL inhibition reduced tumor burden, increased apoptosis, and prolonged survival in ENKTL cell line xenograft and patient-derived xenograft models. Our study indicates Bcl-xL as a promising therapeutic target for ENKTL, warranting monitoring in ongoing clinical trials by targeting Bcl-xL.

2.
J Nat Prod ; 86(1): 45-51, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36524671

ABSTRACT

Burkitt's lymphoma (BL) has a particularly extremely poor prognosis and the fastest growth rate among human tumors, and the development of new drugs for the treatment of BL is urgently needed. In this study, the cytotoxic properties of 3,7-bis(3,5-dimethylphenyl)-aaptamine (AP-51), a new semisynthetic alkaloid derived from the marine natural product aapatamine, were investigated using BL cell lines. Our results showed that AP-51 inhibited the proliferation of Daudi and Raji cells with IC50 values of 3.48 and 2.07 µM, respectively. Flow cytometry and Western blot analyses showed that AP-51 initiated G0/G1 phase arrest by modulating the expression of cyclin-dependent kinases (CDKs). AP-51 also induced apoptosis, as demonstrated by nuclear fragmentation, downregulation of BCL-XL and Mcl-1, and upregulation of cleaved caspase-9, cleaved caspase-3, cleaved-PARP, and cytochrome c, the markers of apoptosis regulated via the mitochondrial pathway. When it comes to mitochondria, AP-51 treatment also significantly increased the levels of intracellular mitochondrial superoxide, decreased ATP content, and reduced the expression of ATP synthase, as well as the expression of the mitochondrial respiratory chain complexes. Finally, AP-51 treatment significantly inhibited the PI3K/AKT/mTOR signaling pathway, which was shown to be associated with the induction of apoptosis. Collectively, these findings indicated that AP-51 initiated cell cycle arrest, induced apoptosis, caused mitochondrial dysfunction, and decreased the phosphorylation of PI3K/AKT/mTOR signaling pathway-related proteins and the protein levels of C-MYC, suggesting that AP-51 has therapeutic potential as a possible treatment for Burkitt's lymphoma.


Subject(s)
Alkaloids , Antineoplastic Agents , Burkitt Lymphoma , Porifera , Animals , Humans , Adenosine Triphosphate , Alkaloids/pharmacology , Alkaloids/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Proliferation , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Porifera/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
3.
Biochem Biophys Res Commun ; 547: 162-168, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33610916

ABSTRACT

Although acute myeloid leukemia (AML) is a highly heterogeneous disease with diverse genetic subsets, one hallmark of AML blasts is myeloid differentiation blockade. Extensive evidence has indicated that differentiation induction therapy represents a promising treatment strategy. Here, we identified that the pharmacological inhibition of the mitochondrial electron transport chain (ETC) complex III by antimycin A inhibits proliferation and promotes cellular differentiation of AML cells. Mechanistically, we showed that the inhibition of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in de novo pyrimidine biosynthesis, is involved in antimycin A-induced differentiation. The activity of antimycin A could be reversed by supplement of excessive amounts of exogenous uridine as well as orotic acid, the product of DHODH. Furthermore, we also found that complex III inhibition exerts a synergistic effect in differentiation induction combined with DHODH inhibitor brequinar as well as with the pyrimidine salvage pathway inhibitor dipyridamole. Collectively, our study uncovered the link between mitochondrial complex III and AML differentiation and may provide further insight into the potential application of mitochondrial complex III inhibitor as a mono or combination treatment in differentiation therapy of AML.


Subject(s)
Antimycin A/analogs & derivatives , Biphenyl Compounds/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Antimycin A/pharmacology , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dihydroorotate Dehydrogenase , Electron Transport Complex III/metabolism , Enzyme Inhibitors/pharmacology , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism
4.
J Nat Prod ; 83(12): 3758-3763, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33170001

ABSTRACT

A chemical modification study was conducted on the marine natural product aaptamine (1), isolated from the marine sponge Aaptos aaptos. Thirty new derivatives substituted by various aromatic rings at the 3- and 7-positions of aaptamine were prepared by bromination, followed by the Suzuki coupling reaction. Sixteen compounds displayed cytotoxicities to four cancer cell lines (IC50 < 10 µM). In particular, compound 5i demonstrated a significant antiproliferative effect on the extranodal natural killer/T-cell lymphoma (ENKT) cell line SNK-6 with an IC50 value of 0.6 µM. Additionally, compound 5i showed cytotoxicities to multiple lymphoma cell lines, including Ramos, Raji, WSU-DLCL2, and SU-DHL-4 cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Killer Cells, Natural/immunology , Lymphoma, T-Cell/drug therapy , Naphthyridines/therapeutic use , Drug Screening Assays, Antitumor , Humans , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Naphthyridines/chemistry
5.
J Phys Act Health ; 16(11): 945-951, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31518988

ABSTRACT

BACKGROUND: Play equipment at home could be targeted in interventions to increase children's physical activity (PA), but evidence is mixed, potentially because current methods do not reflect children's lived experience. This study investigated associations between combinations of equipment and PA. METHODS: Data were from the Mothers and their Children's Health study and the Australian Longitudinal Study on Women's Health. Mothers (n = 2409) indicated the types of fixed active (eg, trampolines), portable active (eg, bicycles), and electronic (eg, computers) equipment at home, and the number of days children (n = 4092, aged 5-12 y, 51% boys) met PA guidelines. Latent class analysis was used to identify combinations of equipment, and linear regressions were used to investigate associations with PA. RESULTS: Compared with children with high active (fixed and portable) and medium electronic equipment, children with portable active and medium (B = -0.53; 95% confidence interval, -0.72 to -0.34) or high (B = -0.58; 95% confidence interval, -0.83 to -0.33) electronic equipment met the guidelines on fewer days. Children with similar active equipment (but more electronic equipment) met the PA guidelines on fewer days (mean difference = -0.51, SE = 0.14, P = .002). CONCLUSION: Having the right combination of play equipment at home may be important for children's PA.


Subject(s)
Equipment and Supplies/standards , Exercise/psychology , Mothers/psychology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male
6.
Oncol Lett ; 16(4): 4773-4781, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30214610

ABSTRACT

Integrin signaling may modulate several different functions involved in cell migration, invasion, proliferation and motility, and is a potential candidate biomarker for oral cancer. In the present study, a total of four integrin genes were evaluated as potential biomarkers of oral squamous cell carcinoma (OSCC). Gene expression was determined using the reverse transcription-quantitative polymerase chain reaction in 55 OSCC and 55 matched normal oral tissues. The performance of individual and combined biomarkers was analyzed by receiver operating characteristic (ROC) analysis based on the relative mRNA expression (OSCC vs. matched oral tissue from the tumor-free margin), which was calculated using the ΔΔCq value (ΔCq of OSCC-ΔCq of oral tissue from the tumor-free margin of the same patient). In the individual ROC analysis, the areas under the ROC curve (AUCs) of relative mRNA expression (ΔΔCq) of integrin subunit α3 (ITGA3), integrin subunit α5 (ITGA5), integrin subunit ß1 (ITGB1) and integrin subunit ß6 (ITGB6) in all tumor locations were 0.724, 0.698, 0.640 and 0.657, respectively. For locations 2 (tongue/mouth part) and 3 (edentulous ridge), their individual AUC values were 0.840, 0.765, 0.725 and 0.763, respectively. In the cumulative ROC analysis, ITGA3, ITGA5 and ITGB1 genes exhibited the highest combined AUC values (0.809 and 0.871 for all locations and locations 2 and 3 combined, respectively) compared with other biomarker combinations. In conclusion, the results of the present study identified that higher mRNA expressions of ITGA3, ITGA5, ITGB1 and ITGB6 genes are suitable for OSCC diagnosis biomarkers. Cumulative ROC analysis indicated an improved overall performance compared with the best individual integrin biomarker of OSCC.

7.
Small ; 14(40): e1802302, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30198180

ABSTRACT

Heterojunctions formed from low-dimensional materials can result in photovoltaic and photodetection devices displaying exceptional physical properties and excellent performance. Herein, a mixed-dimensional van der Waals (vdW) heterojunction comprising a 1D n-type Ga-doped CdS nanowire and a 2D p-type MoTe2 flake is demonstrated; the corresponding photovoltaic device exhibits an outstanding conversion efficiency of 15.01% under illumination with white light at 650 µW cm-2 . A potential difference of 80 meV measured, using Kelvin probe force microscopy, at the CdS-MoTe2 interface confirms the separation and accumulation of photoexcited carriers upon illumination. Moreover, the photodetection characteristics of the vdW heterojunction device at zero bias reveal a rapid response time (<50 ms) and a photoresponsivity that are linearly proportional to the power density of the light. Interestingly, the response of the vdW heterojunction device is negligible when illuminated at 580 nm; this exceptional behavior is presumably due to the rapid rate of recombination of the photoexcited carriers of MoTe2 . Such mixed-dimensional vdW heterojunctions appear to be novel design elements for efficient photovoltaic and self-driven photodetection devices.

8.
Onco Targets Ther ; 10: 3289-3297, 2017.
Article in English | MEDLINE | ID: mdl-28740404

ABSTRACT

We previously reported that the soft coral-derived bioactive substance, sinuleptolide, can inhibit the proliferation of oral cancer cells in association with oxidative stress. The functional role of oxidative stress in the cell-killing effect of sinuleptolide on oral cancer cells was not investigated as yet. To address this question, we introduced the reactive oxygen species (ROS) scavenger (N-acetylcysteine [NAC]) in a pretreatment to evaluate the sinuleptolide-induced changes to cell viability, morphology, intracellular ROS, mitochondrial superoxide, apoptosis, and DNA damage of oral cancer cells (Ca9-22). After sinuleptolide treatment, antiproliferation, apoptosis-like morphology, ROS/mitochondrial superoxide generation, annexin V-based apoptosis, and γH2AX-based DNA damage were induced. All these changes were blocked by NAC pretreatment at 4 mM for 1 h. This showed that the cell-killing mechanism of oral cancer cells of sinuleptolide is ROS dependent.

9.
Int J Mol Sci ; 18(7)2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28708091

ABSTRACT

Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor ß (TGFß) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFß signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFß, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.


Subject(s)
Hedgehog Proteins/metabolism , MicroRNAs/metabolism , Molecular Targeted Therapy , Mouth Neoplasms/drug therapy , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Animals , Humans , Mouth Neoplasms/genetics , Signal Transduction
10.
Environ Toxicol ; 32(9): 2124-2132, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28548367

ABSTRACT

Soft corals-derived natural product, sinularin, was antiproliferative against some cancers but its effect and detailed mechanism on oral cancer cells remain unclear. The subject of this study is to examine the antioral cancer effects and underlying detailed mechanisms in terms of cell viability, oxidative stress, cell cycle analysis, and apoptosis analyses. In MTS assay, sinularin dose-responsively decreased cell viability of three oral cancer cells (Ca9-22, HSC-3, and CAL 27) but only little damage to oral normal cells (HGF-1). This cell killing effect was rescued by the antioxidant N-acetylcysteine (NAC) pretreatment. Abnormal cell morphology and induction of reactive oxygen species (ROS) were found in sinularin-treated oral cancer Ca9-22 cells, however, NAC pretreatment also recovered these changes. Sinularin arrested the Ca9-22 cells at G2/M phase and dysregulated the G2/M regulatory proteins such as cdc2 and cyclin B1. Sinularin dose-responsively induced apoptosis on Ca9-22 cells in terms of flow cytometry (annexin V and pancaspase analyses) and western blotting (caspases 3, 8, 9) and poly (ADP-ribose) polymerase (PARP). These apoptotic changes of sinularin-treated Ca9-22 cells were rescued by NAC pretreatment. Taken together, sinularin induces oxidative stress-mediated antiproliferation, G2/M arrest, and apoptosis against oral cancer cells and may be a potential marine drug for antioral cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Mouth Neoplasms/drug therapy , Acetylcysteine/pharmacology , Antineoplastic Agents/toxicity , Antioxidants/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Diterpenes/toxicity , G2 Phase Cell Cycle Checkpoints/drug effects , Heterocyclic Compounds, 3-Ring/toxicity , Humans , Oxidative Stress/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism
11.
Molecules ; 21(10)2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27706060

ABSTRACT

We have overcome the synthetic difficulty of 9,9',9'',9''',9'''',9'''''-((phenylsilanetriyl)tris(benzene-5,3,1-triyl))hexakis(9H-carbazole) (SimCP3) an advanced homologue of previously known SimCP2 as a solution-processed, high triplet gap energy host material for a blue phosphorescence dopant. A series of organic light-emitting diodes based on blue phosphorescence dopant iridium (III) bis(4,6-difluorophenylpyridinato)picolate, FIrpic, were fabricated and tested to demonstrate the validity of solution-processed SimCP3 in the device fabrication.


Subject(s)
Carbazoles , Luminescent Agents , Semiconductors , Carbazoles/chemical synthesis , Carbazoles/chemistry , Luminescent Agents/chemical synthesis , Luminescent Agents/chemistry
12.
Arch Oral Biol ; 66: 147-54, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26954095

ABSTRACT

OBJECTIVE: Sinuleptolide, a soft corals-derived bioactive norditerpenoid, is a marine natural product with a potent anti-inflammatory effect. We evaluate the potential anti-oral cancer effects of sinuleptolide and investigate the possible mechanisms involved. DESIGNS: Cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and DNA damage analyses were performed. RESULTS: In a cell viability assay, we found that sinuleptolide is dose-responsively antiproliferative against oral gingival cancer Ca9-22 cells but less harmful to normal human gingival fibroblast (HGF-1) cells (P<0.001). In cell cycle analysis, sinuleptolide induced subG1 accumulation at a higher dose and led to G2/M arrest of Ca9-22 cells (P<0.005). Apoptosis was significantly increased in sinuleptolide-treated Ca9-22 cells based on annexin V and poly(ADP-ribose) polymerase (PARP) expressions (P<0.05-0.0001). Based on flow cytometer analysis, sinuleptolide also induced the generation of ROS and decreased MMP in a dose-responsive manner (P<0.05-0.0001). DNA damage increased dose-responsively after sinuleptolide treatments (P < 0.001) based on comet and γH2AX assays. CONCLUSION: Sinuleptolide can induce an antiproliferation of oral cancer Ca9-22 cells involving apoptosis, oxidative stress and DNA damage, suggesting that sinuleptolide represents a potential chemotherapeutic drug for oral cancer treatment.


Subject(s)
Apoptosis/drug effects , DNA Damage , Diterpenes/pharmacology , Mouth Neoplasms/drug therapy , Oxidative Stress/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Histones/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Poly(ADP-ribose) Polymerases/biosynthesis , Reactive Oxygen Species/metabolism
13.
Cancer Lett ; 373(2): 185-92, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-26808576

ABSTRACT

Epigenetic modifications play important roles in regulating carcinogenesis, and specific epigenetic modifications have emerged as potential tumor markers. Herein, we summarize several types of epigenetic modifications, explore the role played by epigenetic modifications in gene regulation, and describe the patterns of epigenetic modifications in cancers. Since epigenetic modifications have been reported to regulate the Warburg effect in cancers, the roles of epigenetic modifications in sugar metabolism are discussed. In addition, oxidative stress may play an important role in carcinogenesis, and the role of oxidative stress and epigenetic modification in carcinogenesis is addressed. We also discuss the role of epigenetic modifications as therapeutic targets. Finally, the synergistic effects of the combined treatment of epigenetic regulator and anticancer drugs for cancer therapy are described.


Subject(s)
DNA Methylation , Histones/metabolism , Neoplasms/drug therapy , Acetylation , Animals , Autophagy , Carbohydrate Metabolism , Epigenesis, Genetic , Glycolysis/drug effects , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress
14.
Tumour Biol ; 36(8): 5743-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26188905

ABSTRACT

Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Endoplasmic Reticulum Stress/genetics , Molecular Targeted Therapy , Neoplasms/genetics , Reactive Oxygen Species/metabolism , Animals , Humans , Mice , Neoplasms/pathology , Neoplasms/therapy , Oxidative Stress/genetics , Protein Folding , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
15.
Arch Immunol Ther Exp (Warsz) ; 63(5): 357-66, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26089209

ABSTRACT

Double-stranded breaks (DSBs) are cytotoxic DNA lesions caused by oxygen radicals, ionizing radiation, and radiomimetic chemicals. Increasing understanding of DNA damage signaling has provided an ever-expanding list of modulators reported to orchestrate DNA damage repair and ataxia telangiectasia mutated (ATM) is the master regulator and main transducer of the DSB response. Increasingly, it is being realized that DNA damage response is a synchronized and branched network that functionalizes different molecular cascades to activate special checkpoints, thus temporarily arresting progression of the cell cycle while damage is being assessed and processed. It is noteworthy that both nutrigenetics and nutrigenomics have revolutionized the field of molecular biology and rapidly accumulating experimental evidence has started to shed light on biological activities of a wide range of phytochemicals reported to modulate cell cycle, DNA repair, cell growth, differentiation and apoptosis as evidenced by cell-based studies. In this review, we have attempted to provide an overview of DNA damage signaling, how ATM signaling regulates tumor necrosis factors-related apoptosis inducing ligand (TRAIL)-induced intracellular network. We also illuminate on how resveratrol, epigallocatechin gallate, curcumin, jaceosidin, cucurbitacin, apigenin, genistein, and others trigger activation of ATM in different cancer cells as well as agents for ATM inactivation. Understanding the interplay of TRAIL-induced intracellular signaling and ATM modulation of downstream effectors is very important. This holds particularly for a reconceptualization of the apparently paradoxical roles and therapeutically targetable for enhancing the response to DNA damage-inducing therapy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Repair/drug effects , Phytochemicals/pharmacology , Animals , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Suppressor Proteins/metabolism
16.
Int J Nanomedicine ; 10: 3183-91, 2015.
Article in English | MEDLINE | ID: mdl-25995628

ABSTRACT

Research concerning the epigenome over the years has systematically and sequentially shown substantial development and we have moved from global inhibition of modifications of the epigenome toward identification and targeted therapy against tumor-specific epigenetic mechanisms. In accordance with this approach, several drugs with epigenetically modulating activity have received considerable attention and appreciation, and recently emerging scientific evidence is uncovering details of their mode of action. High-throughput technologies have considerably improved our existing understanding of tumor suppressors, oncogenes, and signaling pathways that are key drivers of cancer. In this review, we summarize the general epigenetic mechanisms in cancer, including: the post-translational modification of DNA methyltransferase and its mediated inactivation of Ras association domain family 1 isoform A, Sonic hedgehog signaling, Wnt signaling, Notch signaling, transforming growth factor signaling, and natural products with epigenetic modification ability. Moreover, we introduce the importance of nanomedicine for delivery of natural products with modulating ability to epigenetic machinery in cancer cells. Such in-depth and comprehensive knowledge regarding epigenetic dysregulation will be helpful in the upcoming era of molecular genomic pathology for both detection and treatment of cancer. Epigenetic information will also be helpful when nanotherapy is used for epigenetic modification.


Subject(s)
Epigenesis, Genetic , Neoplasms/genetics , Signal Transduction , Humans , Nanomedicine
17.
Anim Biotechnol ; 25(2): 119-27, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24555797

ABSTRACT

Most species of penguins are sexual monomorphic and therefore it is difficult to visually identify their genders for monitoring population stability in terms of sex ratio analysis. In this study, we evaluated the suitability using melting curve analysis (MCA) for high-throughput gender identification of penguins. Preliminary test indicated that the Griffiths's P2/P8 primers were not suitable for MCA analysis. Based on sequence alignment of Chromo-Helicase-DNA binding protein (CHD)-W and CHD-Z genes from four species of penguins (Pygoscelis papua, Aptenodytes patagonicus, Spheniscus magellanicus, and Eudyptes chrysocome), we redesigned forward primers for the CHD-W/CHD-Z-common region (PGU-ZW2) and the CHD-W-specific region (PGU-W2) to be used in combination with the reverse Griffiths's P2 primer. When tested with P. papua samples, PCR using P2/PGU-ZW2 and P2/PGU-W2 primer sets generated two amplicons of 148- and 356-bp, respectively, which were easily resolved in 1.5% agarose gels. MCA analysis indicated the melting temperature (Tm) values for P2/PGU-ZW2 and P2/PGU-W2 amplicons of P. papua samples were 79.75°C-80.5°C and 81.0°C-81.5°C, respectively. Females displayed both ZW-common and W-specific Tm peaks, whereas male was positive only for ZW-common peak. Taken together, our redesigned primers coupled with MCA analysis allows precise high throughput gender identification for P. papua, and potentially for other penguin species such as A. patagonicus, S. magellanicus, and E. chrysocome as well.


Subject(s)
DNA Primers/genetics , DNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Sex Determination Analysis/methods , Spheniscidae/classification , Spheniscidae/genetics , Animals , Base Sequence , Female , Genetic Testing/methods , Male , Molecular Sequence Data , Reproducibility of Results , Sensitivity and Specificity , Sex Characteristics , Species Specificity , Transition Temperature
18.
ACS Appl Mater Interfaces ; 5(21): 10614-22, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24138603

ABSTRACT

We demonstrate high-efficiency small-molecule-based white phosphorescent organic light emitting diodes (PHOLEDs) by single-active-layer solution-based processes with the current efficiency of 17.3 cdA(-1) and maximum luminous efficiency of 8.86 lmW(-1) at a current density of 1 mA cm(-2). The small-molecule based emitting layers are codoped with blue and orange phosphorescent dyes. We show that the presence of CsF/Al at cathodes not only improves electron transport in oxadiazole-containing electron transport layers (ETLs), but also facilitates electron injection through the reacted oxadiazole moiety to reduce interface resistance, which results in the enhancement of current efficiency. By selecting oxadiazole-based materials as ETLs with proper electron injection layer (EIL)/cathode structures, the brightness and efficiency of white PHOLEDs are significantly improved.

19.
ScientificWorldJournal ; 2013: 943539, 2013.
Article in English | MEDLINE | ID: mdl-23843741

ABSTRACT

Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Design , Genetic Predisposition to Disease/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Humans
20.
Opt Express ; 20(3): 3005-14, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330538

ABSTRACT

The authors demonstrated an efficient color conversion layer (CCL) by using nanosphere arrays in down-converted white organic light-emitting diodes (WOLEDs). The introduced periodical nanospheres not only helped extract the confined light in devices, but also increased the effective light path to achieve high-efficiency color conversion. By applying a CCL with red phosphor on a 400-nm-period nanosphere array, we achieved 137% color conversion ratio for blue OLEDs, which was 2.68 times higher than conventional flat CCL. The resulting luminous efficiency of WOLEDs with patterned CCLs (20.97 cd/A, 1000 cd/m2) was two times higher than the efficiency of the flat device (10.26 cd/A, 1000 cd/m2).


Subject(s)
Color , Lighting/instrumentation , Nanospheres/chemistry , Nanospheres/ultrastructure , Nanotechnology/instrumentation , Semiconductors , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...