Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.455
Filter
1.
Research (Wash D C) ; 7: 0413, 2024.
Article in English | MEDLINE | ID: mdl-38979516

ABSTRACT

Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.

2.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978228

ABSTRACT

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

3.
World J Pediatr ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951456

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is a significant cause of childhood stroke and transient ischemic attacks (TIAs). This study aimed to assess the safety and efficacy of remote ischemic conditioning (RIC) in children with MMD. METHODS: In a single-center pilot study, 46 MMD patients aged 4 to 14 years, with no history of reconstructive surgery, were randomly assigned to receive either RIC or sham RIC treatment twice daily for a year. The primary outcome measured was the cumulative incidence of major adverse cerebrovascular events (MACEs). Secondary outcomes included ischemic stroke, recurrent TIA, hemorrhagic stroke, revascularization rates, and clinical improvement assessed using the patient global impression of change (PGIC) scale during follow-up. RIC-related adverse events were also recorded, and cerebral hemodynamics were evaluated using transcranial Doppler. RESULTS: All 46 patients completed the final follow-up (23 each in the RIC and sham RIC groups). No severe adverse events associated with RIC were observed. Kaplan-Meier analysis indicated a significant reduction in MACEs frequency after RIC treatment [log-rank test (Mantel-Cox), P = 0.021]. At 3-year follow-up, two (4.35%) patients had an ischemic stroke, four (8.70%) experienced TIAs, and two (4.35%) underwent revascularization as the qualifying MACEs. The clinical improvement rate in the RIC group was higher than the sham RIC group on the PGIC scale (65.2% vs. 26.1%, P < 0.01). No statistical difference in cerebral hemodynamics post-treatment was observed. CONCLUSIONS: RIC is a safe and effective adjunct therapy for asymptomatic children with MMD. This was largely due to the reduced incidence of ischemic cerebrovascular events.

4.
Adv Sci (Weinh) ; : e2307185, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958448

ABSTRACT

Motor learning (ML), which plays a fundamental role in growth and physical rehabilitation, involves different stages of learning and memory processes through different brain regions. However, the neural mechanisms that underlie ML are not sufficiently understood. Here, a previously unreported neuronal projection from the dorsal hippocampus (dHPC) to the zona incerta (ZI) involved in the regulation of ML behaviors is identified. Using recombinant adeno-associated virus, the projections to the ZI are surprisingly identified as originating from the dorsal dentate gyrus (DG) and CA1 subregions of the dHPC. Furthermore, projection-specific chemogenetic and optogenetic manipulation reveals that the projections from the dorsal CA1 to the ZI play key roles in the acquisition and consolidation of ML behaviors, whereas the projections from the dorsal DG to the ZI mediate the retrieval/retention of ML behaviors. The results reveal new projections from the dorsal DG and dorsal CA1 to the ZI involved in the regulation of ML and provide insight into the stages over which this regulation occurs.

5.
J Appl Microbiol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020259

ABSTRACT

AIMS: Pulmonary fibrosis (PF) is a progressive and incurable lung disease for which treatment options are limited. Here, we aimed to conduct an exploratory study on the effects of the Mongolian medicine Saorilao-4 (SRL) on the gut microbiota structure, species abundance, and diversity of a rat PF model as well as the mechanisms underlying such effects. METHODS AND RESULTS: Rat fecal samples were analyzed using 16S rRNA sequencing technology. Bioinformatic and correlation analyses were performed on microbiota data to determine significant associations. SRL substantially attenuated the adverse effects exerted by PF on the structure and diversity of gut microbiota while regulating its alpha and beta diversities. Linear discriminant analysis effect size enabled the identification of 62 differentially abundant microbial taxa. Gut microbiota abundance analysis revealed that SRL significantly increased the relative abundance of bacterial phyla such as Firmicutes and Bacteroidetes. Moreover, SRL increased the proportion of beneficial bacteria, such as Lactobacillus and Bifidobacteriales, decreased the proportion of pathogenic bacteria, such as Rikenellaceae, and balanced the gut microbiota by regulating metabolic pathways. CONCLUSIONS: SRL may attenuate PF by regulating gut microbiota. This exploratory study establishes the groundwork for investigating the metagenomics of PF.

6.
Conscious Cogn ; 123: 103727, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972289

ABSTRACT

The intentional binding effect refers to the phenomenon where the perceived temporal interval between a voluntary action and its sensory consequence is subjectively compressed. Prior research revealed the importance of tactile feedback from the keyboard on this effect. Here we examined the necessity of such tactile feedback by utilizing a touch-free key-press device without haptic feedback, and explored how initial/outcome sensory modalities (visual/auditory/tactile) and their consistency influence the intentional binding effect. Participants estimated three delay lengths (250, 550, or 850 ms) between the initial and outcome stimuli. Results showed that regardless of the combinations of sensory modalities between the initial and the outcome stimuli (i.e., modal consistency), the intentional binding effect was only observed in the 250 ms delay condition. This findings indicate a stable intentional binding effect both within and across sensory modalities, supporting the existence of a shared mechanism underlying the binding effect in touch-free voluntary actions.

7.
Bone Joint Res ; 13(7): 362-371, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39013544

ABSTRACT

Aims: The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods: Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results: A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion: This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions.

8.
Cancer Discov ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38885349

ABSTRACT

Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer (CRC) samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by re-activating the dormant human-reverse-transcriptase (hTERT) subunit of telomerase holoenzyme in an iron-(Fe3+)-dependent-manner and thereby drives CRCs. Chemical genetic screens combined with isothermal-dose response fingerprinting and mass-spectrometry identified a small molecule SP2509, that specifically inhibits Pirin-mediated hTERT reactivation in CRCs by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat, and increased incidence of CRCs. Small molecules like SP2509 represent a novel modality to target telomerase that acts as driver of 90% human cancers and is yet to be targeted in clinic.

9.
Kaohsiung J Med Sci ; 40(7): 631-641, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38826147

ABSTRACT

Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased ß-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.


Subject(s)
Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Autophagy , Carcinogenesis , Cell Proliferation , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Mice , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Movement/genetics , Humans , Fibroblasts/metabolism , Mice, Knockout
10.
Microbiol Spectr ; : e0045824, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916357

ABSTRACT

Metagenomic next-generation sequencing (mNGS) is an unbiased and rapid method for detecting pathogens. This study enrolled 145 suspected severe pneumonia patients who were admitted to the Affiliated Hospital of Jining Medical University. This study primarily aimed to determine the diagnostic performance of mNGS and conventional microbiological tests (CMTs) using bronchoalveolar lavage fluid samples for detecting pathogens. Our findings indicated that mNGS performed significantly higher sensitivity (97.54% vs 28.68%, P < 0.001), coincidence (90.34% vs 35.17%, P < 0.001), and negative predictive value (80.00% vs 13.21%, P < 0.001) but performed lower specificity than CMTs (52.17% vs 87.5%, P < 0.001). Streptococcus pneumoniae as the most common bacterial pathogen had the largest proportion (22.90%, 30/131) in this study. In addition to bacteria, fungi, and virus, mNGS can detect a variety of atypical pathogens such as Mycobacterium tuberculosis and non-tuberculous. Mixed infections were common in patients with severe pneumonia, and bacterial-fungal-viral-atypical pathogens were the most complicated infection. After adjustments of antibiotics based on mNGS and CMTs, the clinical manifestation improved in 139 (95.86%, 139/145) patients. Our data demonstrated that mNGS had significant advantage in diagnosing respiratory tract infections, especially atypical pathogens and fungal infections. Pathogens were detected timely and comprehensively, contributing to the adjustments of antibiotic treatments timely and accurately, improving patient prognosis and decreasing mortality potentially.IMPORTANCEMetagenomic next-generation sequencing using bronchoalveolar lavage fluid can provide more comprehensive and accurate pathogens for respiratory tract infections, especially when considering the previous usage of empirical antibiotics before admission or complicated clinical presentation. This technology is expected to play an important role in the precise application of antimicrobial drugs in the future.

11.
IEEE Trans Image Process ; 33: 3765-3777, 2024.
Article in English | MEDLINE | ID: mdl-38857134

ABSTRACT

Reshaping, a point operation that alters the characteristics of signals, has been shown capable of improving the compression ratio in video coding practices. Out-of-loop reshaping that directly modifies the input video signal was first adopted as the supplemental enhancement information (SEI) for the HEVC/H.265 without the need to alter the core design of the video codec. VVC/H.266 further improves the coding efficiency by adopting in-loop reshaping that modifies the residual signal being processed in the hybrid coding loop. In this paper, we theoretically analyze the rate-distortion performance of the in-loop reshaping and use experiments to verify the theoretical result. We prove that the in-loop reshaping can improve coding efficiency when the entropy coder adopted in the coding pipeline is suboptimal, which is in line with the practical scenarios that video codecs operate in. We derive the PSNR gain in a closed form and show that the theoretically predicted gain is consistent with that measured from experiments using standard testing video sequences.

12.
Transl Oncol ; 47: 102035, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878613

ABSTRACT

BACKGROUND: Considerable studies show that ETS variant 4 (ETV4) plays an important roles in multitudinous tumor. This study investigated its function in cholangiocarcinoma (CCA) progression and revealed the underlying mechanisms. METHODS: The expression of ETV4 in CCA was evaluated using TCGA database and the single-cell analysis based on GSE189903 dataset. ETV4 expression in CCA human specimens was detected by reverse transcription-quantitative PCR, immunohistochemistry, and western blot. Cell Counting Kit-8, EdU, colony formation, wound healing, and Transwell assays were used to analyze the effects of ETV4. Extracellular acidification rate, oxygen consumption rate, glucose uptake, and lactate production were used to measure glycolysis in CAA cells. Western blot was performed to explore glycolysis-related proteins. Tumor growth was evaluated in mice xenograft tumors. RESULTS: ETV4 was up-regulated in CCA epithelial cells. The high-expression of ETV4 was associated with poor prognosis of patients with CCA. ETV4 overexpression enhanced the proliferation, migration, invasion, and glycolysis of CCA cells; ETV4 silencing led to the contrary effects. Mechanistically, ETV4 activates TGF-ß/Smad2/3 signaling pathway. In mice xenograft mode, ETV4 silencing inhibits the tumor growth, the expression of glycolysis-related proteins and TGF-ß/Smad2/3 pathway proteins. CONCLUSIONS: ETV4 functions as an essential factor in the roles of TGF-ß1 in CCA cells, and may be a promising target for TGF-ß1-mediated CCA progression.

13.
Water Res ; 260: 121978, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38924808

ABSTRACT

Sewage sludge adsorbs a large amount of harmful organic pollutants, particularly the persistent and hydrophobic polyhalogenated compounds (PHCs). PHCs have been subjected to biological and chemical oxidation treatments during wastewater treatment processes; however, the species and concentrations of their transformation products (TPs) in sludge remain unknown, and the transformation pathways are unclear. In this study, 234 TPs of PHCs, including 77 TPs of chlorinated paraffins (CPs-TPs), 102 TPs of organochlorine pesticides (OCPs-TPs), 45 TPs of dechlorane plus (DPs-TPs), and 10 TPs of brominated flame retardants (BFRs-TPs), were identified in sludge through Ph4PCl-enhanced ionization coupled with ultra-performance liquid chromatography-Orbitrap-mass spectrometry. Based on the chemical structures of the identified TPs, we identified three major transformation pathways: dehalogenation-hydroxylation, carbon chain decomposition, and desulfurization. Approximately 97 TPs were newly discovered through the pathways. Carbon chain decomposition products of OCPs and DPs were detected for the first time at relatively high abundances. More hydroxylation products of DPs and hexabromocyclododecane (HBCD) and multi-dehalogenation products of heptachlor, toxaphene, DPs and HBCDs were detected at relative intensities higher than those of the known TPs. The oxidation treatment of sludge achieved up to 13 %-94 % of PHCs to be removed, with dehalogenation-hydroxylation as the main transformation pathway. Advanced treatment technologies are needed for degradation of both PHCs and their TPs.

14.
Brain Imaging Behav ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717573

ABSTRACT

BACKGROUND: Impaired visual mental imagery is an important symptom of depression and has gradually become an intervention target for cognitive behavioral therapy. METHODS: Our study involved a total of 25 healthy controls (HC) and 23 individuals with moderate depressive symptoms (MD). This study explored the attentional mechanism supporting visual mental imagery impairments in depression using the Vividness of Visual Imagery Questionnaire (VVIQ), attentional network test (ANT), and resting-state functional magnetic resonance imaging (rs-fMRI). The intrinsic activity of attention-related regions relative to those supporting visual mental imagery was identified in depression patients. In addition, a meta-analysis was used to describe the cognitive function related to this intrinsic activity. RESULTS: The global correlation (GCOR) of the right anterior fusiform gyrus (FG) was decreased in depression patients. Attention-related areas were concentrated in the right posterior FG; the anterior and posterior functional connectivity (FC) of the FG was decreased in depression patients. Graph theoretic analysis showed that the degree of the right anterior FG was decreased, the degree of the anterior insula was increased, and the negative connection between these two regions was strengthened in depression patients. In addition, the degree of the right anterior FG, the FC between the subregions of the right FG, and the FC between the right anterior FG and insula were correlated with VVIQ scores; however, this correlation was not significant in depression patients. The meta-analysis suggested that the changes in the anterior FG in depressed patients may stem from difficulties of semantic memory retrieval. CONCLUSION: The changed intrinsic activity of subregions of the FG relative to the semantic memory retrieval may be associated with visual mental imagery impairments in depression.

15.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777253

ABSTRACT

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Brachyura , Gene Expression Regulation , Immunity, Innate , Phylogeny , Receptors, Laminin , Sequence Alignment , Animals , Brachyura/genetics , Brachyura/immunology , Receptors, Laminin/genetics , Receptors, Laminin/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Base Sequence
16.
Article in English | MEDLINE | ID: mdl-38814778

ABSTRACT

Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent and imbalanced distribution. Nonetheless, there is a lack of theoretical guidance regarding a remedy for this issue. To bridge the gap between theoretical insights and practical solutions, we embark to an analysis of generalization bound of classic SSL algorithms. This analysis reveals that distribution inconsistency between unlabeled and labeled data can cause a significant generalization error bound. Motivated by this theoretical insight, we present a Triplet Adaptation Framework (TAF) to reduce the distribution divergence and improve the generalization of SSL models. TAF comprises three adapters: Balanced Residual Adapter, aiming to map the class distribution of labeled and unlabeled data to a uniform distribution for reducing class distribution divergence; Representation Adapter, aiming to map the representation distribution of unlabeled data to labeled one for reducing representation distribution divergence; and Pseudo-Label Adapter, aiming to align the predicted pseudo-labels with the class distribution of unlabeled data, thereby preventing erroneous pseudo-labels from exacerbating representation divergence. These three adapters collaborate synergistically to reduce the generalization bound, ultimately achieving a more robust and generalizable SSL model. Extensive experiments across various robust SSL scenarios validate the efficacy of our method.

17.
Kaohsiung J Med Sci ; 40(7): 642-649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804615

ABSTRACT

Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1ß, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic ß-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.


Subject(s)
Autophagosomes , Autophagy , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , Autophagy/physiology , Humans , Animals , Mice , Autophagosomes/metabolism , Cell Line, Tumor , Microtubule-Associated Proteins/metabolism , Proteomics/methods , Tandem Mass Spectrometry
18.
Psychiatry Res ; 337: 115929, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718554

ABSTRACT

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.


Subject(s)
Bipolar Disorder , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Schizophrenia , Schizophrenia/genetics , Bipolar Disorder/genetics , Humans , Animals , Mice , Linkage Disequilibrium , Genetic Predisposition to Disease , Male , Genomic Structural Variation/genetics , Quantitative Trait Loci , Mice, Inbred C57BL
19.
J Transl Med ; 22(1): 507, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802851

ABSTRACT

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Subject(s)
Fibronectins , Neoplasm Metastasis , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins c-myc , RNA, Circular , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Male , Proteolysis , Mice, Nude , Base Sequence , Cell Movement/genetics , Female , Mice
20.
Sci Total Environ ; 933: 173057, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38729372

ABSTRACT

Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/µg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.


Subject(s)
Fungi , Sulfonium Compounds , Sulfonium Compounds/metabolism , Fungi/metabolism , Geologic Sediments/microbiology , Sulfides/metabolism , Biodegradation, Environmental , Carbon-Sulfur Lyases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...