Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 457350, 2014.
Article in English | MEDLINE | ID: mdl-24715812

ABSTRACT

Three species of otter can be found throughout Malay Peninsula: Aonyx cinereus, Lutra sumatrana, and Lutrogale perspicillata. In this study, we focused on the A. cinereus population that ranges from the southern and the east coast to the northern regions of Malay Peninsula up to southern Thailand to review the relationships between the populations based on the mitochondrial D-loop region. Forty-eight samples from six populations were recognized as Johor, Perak, Terengganu, Kelantan, Ranong, and Thale Noi. Among the 48 samples, 33 were identified as A. cinereus, seven as L. sumatrana, and eight as L. perspicillata. Phylogenetically, two subclades formed for A. cinereus. The first subclade grouped all Malay Peninsula samples except for samples from Kelantan, and the second subclade grouped Kelantan samples with Thai sample. Genetic distance analysis supported the close relationships between Thai and Kelantan samples compared to the samples from Terengganu and the other Malaysian states. A minimum-spanning network showed that Kelantan and Thailand formed a haplogroup distinct from the other populations. Our results show that Thai subspecies A. cinereus may have migrated to Kelantan from Thai mainland. We also suggest the classification of a new subspecies from Malay Peninsula, the small-clawed otter named A. cinereus kecilensis.


Subject(s)
DNA/genetics , Feces , Otters/classification , Animals , Malaysia , Otters/genetics , Thailand
2.
Theor Appl Genet ; 92(3-4): 436-41, 1996 Mar.
Article in English | MEDLINE | ID: mdl-24166268

ABSTRACT

We studied allozyme and chloroplast (cp) DNA variation in natural populations of Pinus kesiya and P. merkusii from Thailand and Vietnam. The results showed striking differences between the two species in the amount and distribution of allozyme variation. P. kesiya harboured considerable allozyme variation and showed weak interpopulational differentiation. In contrast, P. merkmii had very low intrapopulational variability but a high level of interpopulational differentiation. The average Nei's genetic distance separating the two species was exceptionally high (0.701) taking into account their close taxonomic placement in the same subsection Sylvestres. The constructed phylogenetic trees revealed very early divergence of P. kesiya and P. merkusii. The present analysis of cpDNA variation also confirmed the dissimilar character of these two species and was compatible with other evidence indicating the outstanding position of P. merkusii as compared to other Asian members of the subsection Sylvestres. Analysis of cpDNA variation in sympatric populations of P. kesiya and P. merkusii revealed that they are pure representatives of the species in question. This result indicates that despite an overlapping distribution P. kesiya and P. merkusii do not hybridise in nature. We suggest that the distinctive character of P. merkusii is a result of an early separation from other Eurasian pines. Despite spatial proximity, P. kesiya and P. merkusii are kept apart by strong reproductive barriers. The low genetic variability of P. merkusii may be explained by previous bottlenecks, reduced gene flow among populations, and an inbreeding due to small population size and asynchronous flowering.

SELECTION OF CITATIONS
SEARCH DETAIL