Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(21): 14624-14639, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38708108

ABSTRACT

Despite extensive research in the literature, the synthesis of silver nanoparticles (AgNPs) via capping mechanisms remains incompletely understood. This study employs a mechanistic approach to unravel the underlying molecular interactions driving the capping process of biogenic vaterite CaCO3-Ag and explores their interactions with different polymer matrices. X-ray photoelectron spectroscopy (XPS) was used to reveal the capping mechanisms, surface composition alterations, and vaterite polymorph transitions. The oxidation states of AgNPs exhibited distinct changes under different capping agents. The Ag3d spin-orbit splitting profiles revealed the coexistence of Ag+ and Ag0 within CaCO3-Ag, with a significant presence of Ag0 when poly(sodium 4-styrene sulfonate) was employed as the capping agent. Conversely, the use of carboxy methyl cellulose as the capping agent resulted in Ag+ dominance. XPS analysis illuminated the transformation of CaCO3 polymorphs from calcite to vaterite structure, which remained stable following embedding within polymer matrices. Integrating CaCO3-Ag microspheres into polymer matrices and investigating their surface characteristics represents a strategic step toward tailoring material properties for potential applications in active packaging and biomedicine.

2.
RSC Adv ; 14(11): 7631-7639, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38440273

ABSTRACT

In this study, the rutile TiO2 system, widely acclaimed for its superior properties, was enhanced through co-doping with isovalent Sn4+ ions and 2.5% Nb5+ donor ions, diverging from traditional acceptor doping practices. This novel doping strategy was implemented by employing a conventional solid-state reaction method, resulting in the synthesis of Sn-doped Nb0.025Ti0.975O2 (Sn-NTO) ceramics. These ceramics demonstrated remarkable dielectric characteristics, with a high dielectric constant (ε') ranging from ∼27 000 to 34 000 and an exceptionally low loss tangent between 0.005 and 0.056 at ∼25 °C and 1 kHz. Notably, the temperature coefficient of ε', , aligned with the stringent specifications for X7/8/9R capacitors. Furthermore, the Sn-NTO ceramics exhibited a stable Cp response across various frequencies within a humidity range of 50 to 95% RH, with ΔCp (%) values within ±0.3%, and no hysteresis loop was detected, suggesting the absence of water molecule adsorption and desorption during humidity assessments. This behavior is primarily attributed to the effective suppression of oxygen vacancy formation by the Sn4+ ions, which also affects the grain growth diffusion process in the Sn-NTO ceramics. The observed heterogeneous electrical responses between semiconducting grains and insulating grain boundaries in these polycrystalline ceramics are attributed to the internal barrier layer capacitor effect.

3.
ACS Omega ; 9(2): 2263-2271, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250391

ABSTRACT

In this study, we developed magnetic graphene oxide composites by chemically attaching Fe3O4 nanoparticles to graphene oxide nanosheets. Characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), confirmed the successful synthesis of Fe3O4@GO composites with desirable properties. The resulting composites exhibited superparamagnetic behavior, solubility, and compatibility for efficient miRNA separation. Using miR-29a as a model, we demonstrated the effective binding of miR-29a to the magnetic graphene oxide (GO) composites at an optimal concentration of 1.5 mg/mL, followed by a simple separation using magnetic forces. Additionally, the addition of 5.0 M urea enhanced the miRNA recovery. These findings highlight the potential use of our magnetic graphene oxide composites for the efficient separation and recovery of miR-29a, suggesting their broad applicability in various miRNA-based studies. Further exploration can focus on investigating endogenous miRNAs with aberrant expression patterns, contributing to the advancements in precision medicine.

4.
Nanoscale ; 16(2): 678-690, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37964613

ABSTRACT

Manganese dioxide, ß-MnO2, has shown potential in catalyzing the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a monomer of bioplastic polyethylene furanoate (PEF). Herein, the insight into the hydroxy (OH) and surface oxygen effects on the HMF-to-FDCA reaction over ß-MnO2 is clarified through a comprehensive investigation using density functional theory (DFT) calculations, microkinetic modeling, and experiment. Theoretical analyses revealed that both active surface oxygen and OH species (from either base or solvent) facilitate C-H bond breaking and OH insertion, promoting the catalytic activity of ß-MnO2. Microkinetic modeling demonstrated that the FFCA-to-FDCA and DFF-to-FFCA steps are the rate-limiting steps of the hydroxylated and non-hydroxylated surfaces, respectively. These theoretical results agree well with the experiment when water and dimethyl sulfoxide (DMSO) were used as solvents. In addition, the synthesized ß-MnO2 catalyst showed high stability and activity, maintaining stable HMF conversion (≥99 mol%) and high FDCA yield (85-92 mol%) during continuous flow oxidation for 72 hours at pO2 of 1 MPa, 393 K and LHSV of 1 h-1. Thus, considering both hydroxy and surface oxygen species is a new strategy for enhancing the catalytic activity of Mn oxides and other metal oxide catalysts for the HMF-to-FDCA reaction.

5.
ACS Omega ; 8(45): 43295-43303, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024664

ABSTRACT

The search for environmentally friendly and sustainable sources of raw materials has been ongoing for quite a while, and currently, the utilization and applications of agro-industrial biomass residues in biomedicine are being researched. In this study, a polydopamine (PDA)-modified bacterial cellulose (BC) and hydroxyapatite (HA) composite scaffold was fabricated using the freeze-drying method. The as-prepared hydroxyapatite was synthesized via the chemical precipitation method using sugarcane filter cake as a calcium source, as reported in a previous study. X-ray diffraction analysis revealed a carbonated phase of the prepared hydroxyapatite, similar to that of the natural bone mineral. Wide-angle X-ray scattering analysis revealed the successful fabrication of BC/HA composite scaffolds, while X-ray photoelectron spectroscopy suggested that PDA was deposited on the surface of the BC/HA composite scaffolds. In vitro cell viability assays indicated that BC/HA and PDA-modified composite scaffolds did not induce cytotoxicity and were biocompatible with MC3T3-E1 preosteoblasts. PDA-modified composite scaffolds showed enhanced protein adsorption capacity in vitro compared to the unmodified scaffolds. On a concluding note, these results demonstrate that agro-industrial biomass residues have the potential to be used in biomedical applications and that PDA-modified BC/HA composite scaffolds are a promising biomaterial for bone tissue engineering.

6.
Chempluschem ; 88(11): e202300326, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37786294

ABSTRACT

5-Hydroxymethylfurfural (5-HMF) synthesized through glucose conversion requires Lewis acid (L) site for isomerization and Brønsted acid (B) site for dehydration. The objective of this work is to investigate the influence of the metal type of Al-SBA-15-supported phosphates of Cr, Zr, Nb, Sr, and Sn on glucose conversion to 5-HMF in a NaCl-H2 O/n-butanol biphasic solvent system. The structural and acid property of all supported metal phosphate samples were fully verified by several spectroscopic methods. Among those catalysts, CrPO/Al-SBA-15 provided the best performance with the highest glucose conversion and 5-HMF yield, corresponding to the highest total acidity of 0.65 mmol/g and optimal L/B ratio of 1.88. For CrPO/Al-SBA-15, another critical parameter is the phosphate-to-chromium ratio. Moreover, DFT simulation of glucose conversion to 5-HMF on the surface of the optimized chromium phosphate structure reveals three steps of fructose dehydration on the Brønsted acid site. Finally, the optimum reaction condition, reusability, and leaching test of the best catalyst were determined. CrPO/Al-SBA-15 is a promising catalyst for glucose conversion to high-value-added chemicals in future biorefinery production.

7.
Dalton Trans ; 52(34): 11815-11825, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37594445

ABSTRACT

Ball milling of solids under benign conditions leads to surface functionalization without altering the crystal structure and morphology. However, these additional surface functional groups are rarely fixed but instead mobilized across such ball milled solids. This phenomenon, including its effects on electrochemical and electrical properties, has received limited attention. We report herein that dry vibratory ball milling of lepidocrocite-type Cs2Ti6O13 generated hydroxyl groups which subsequently migrated from surfaces to bulk. The increased number of bulk hydroxyl groups is deduced from Raman, IR, and solid state 1H nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. In contrast, the decrease in the relative proportion of surface hydroxyl groups/water and carbon-oxygen species was deduced from X-ray photoelectron spectroscopy. The inaccessible hydroxyl groups in ball milled Cs2Ti6O13 lead to a smaller amount of stored charge and increased charge transfer resistance, according to galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy studies in 1 M Na2SO4. The alternating current electrical properties were also measured, revealing fundamental insights such as the one-dimensional conduction pathway and the relaxation time in microseconds. A model has been proposed for this surface-to-bulk migration of the hydroxyl groups, which competes with surface dangling bonds leading to particle agglomeration.

8.
RSC Adv ; 13(34): 23818, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37564253

ABSTRACT

[This corrects the article DOI: 10.1039/D3RA01914D.].

9.
Heliyon ; 9(6): e17048, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484357

ABSTRACT

CaCu3-xNixTi4O12/CaTiO3 ceramic composites were fabricated using initial Ca2Cu2-xNixTi4O12 compositions (x = 0, 0.05, 0.10, and 0.20) to improve the dielectric properties (DPs) of the CaCu3Ti4O12 ceramics. CaCu3Ti4O12 and CaTiO3 phases were confirmed. Microstructural analysis and Rietveld refinement showed that the Ni2+ dopant might substitute the Cu2+ sites of the CaCu3Ti4O12 structure. The average grain sizes of CaCu3Ti4O12 (4.1-5.6 µm) and CaTiO3 (1.2-1.4 µm) changed slightly with the Ni2+ doping concentration. The best DPs were obtained for the CaCu3-xNixTi4O12/CaTiO3 with x = 0.2. The loss tangent was significantly reduced by an order of magnitude compared to that of the undoped composite, from tanδ∼0.161 to ∼0.016 at 1 kHz, while the dielectric permittivity slightly decreased from ε'∼5.7 × 103 to ∼4.0 × 103. Furthermore, the temperature dependence of ε' could be improved by doping with Ni2+. The improved DPs were caused by the enhanced electrical responses of the internal interfaces, which resulted in enhanced non-Ohmic properties. The largest nonlinear coefficient (α∼7.6) was obtained for the CaCu3-xNixTi4O12/CaTiO3 with x = 0.05. Impedance spectroscopy showed that the CaCu3-xNixTi4O12/CaTiO3 composites consisted of semiconducting and insulating components. The DPs of CaCu3-xNixTi4O12/CaTiO3 were explained based on the space-charge polarization at the active-interfaces.

10.
Materials (Basel) ; 16(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37512220

ABSTRACT

Zeolites in powder form have the potential to agglomerate, lowering access to active sites. Furthermore, a suspension of fine zeolite powder in liquid media is difficult to separate. Such drawbacks could be improved by dispersing zeolite crystals on support materials. This work demonstrates the dispersion of zeolite NaY crystals on bamboo wood by mixing the wood with zeolite gel before hydrothermal treatment. The syntheses were performed with acid-refluxed and non-refluxed wood. The phase of zeolites, particle distribution and morphology, zeolite content in the wood, and zeolite-wood interaction were investigated using X-ray diffraction, X-ray tomography, scanning electron microscopy, thermogravimetric analysis, nitrogen sorption analysis, and X-ray photoelectron spectroscopy. Higher zeolite content and better particle dispersion were obtained in the synthesis with the acid-refluxed wood. The composite of NaY on the acid-refluxed wood was demonstrated to be an effective adsorbent for Ni(II) ions in aqueous solutions, providing a higher adsorbed amount of Ni(II) per weight of NaY.

11.
RSC Adv ; 13(25): 16926-16934, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37283864

ABSTRACT

This work focuses on the effects of Ni precursors (metallic Ni or Mg2NiH4) on the formation of Mg-Fe-Ni intermetallic hydrides as well as their de/rehydrogenation kinetics and reversibility. After ball milling and sintering, the formation of Mg2FeH6 and Mg2NiH4 are found in both samples, while MgH2 is observed only in the sample with metallic Ni. Both samples show comparable hydrogen capacities of 3.2-3.3 wt% H2 during the 1st dehydrogenation, but the sample with metallic Ni decomposes at a lower temperature (ΔT = 12 °C) and shows faster kinetics. Although phase compositions after dehydrogenation of both samples are comparable, their rehydrogenation mechanisms are different. This affects the kinetic properties upon cycling and reversibility. Reversible capacities of the samples with metallic Ni and Mg2NiH4 during the 2nd dehydrogenation are 3.2 and 2.8 wt% H2, respectively, while those during the 3rd-7th cycles reduce to ∼2.8 and 2.6 wt% H2, respectively. Chemical and microstructural characterizations are carried out to explain de/rehydrogenation pathways.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839114

ABSTRACT

Hemeprotein detection has motivated extensive research on the direct reaction of a heme molecule and a redox dye. The present study used methylene blue as both donor and acceptor for a redox reaction. First, the solid phases of methylene blue (MB) and graphene (GP) formed a π-π interaction bond at the aromatic rings. The conductivity of GP was better than that of carbon in a carbon electrode (CE). Then, the working CE was modified using strong adsorption of MB/GP on the electrode surface. The surface of the electrode was investigated using a modified and an unmodified electrode. The electrode's properties were studied using voltammograms of redox couple K3[Fe(CN)6]3-/4-. Its reaction was used to find the active area of the modified electrode, which was 1.76 times bigger than that of the unmodified electrode. The surface coverage values of the modified and unmodified electrodes were 8.17 × 10-6 and 1.53 × 10-5 mol/cm2, respectively. This research also studied the application of hemeprotein detection. Hemoglobin (Hb), myoglobin (Mb), and cytochrome c (Cyt. C) were studied by the reaction of Fe (III/II) at the heme-redox center. The electrocatalytic reaction between MB/GP and hemeproteins produced an anodic peak at 0.35 V for Hb, Mb, and Cyt. C. This nanohybrid film enhanced electron transfer between protein molecules and the modified carbon electrode. The amperometric measurements show that the limit of detection was 0.2 µM, 0.3 µM, and 0.1 µM for Hb, Mb, and Cyt. C, respectively. The measurement spanned a linear range of 0.2 µM to 5 µM, 0.3 µM to 5 µM, and 0.1 µM to 0.7 µM for Hb, Mb, and Cyt. C, respectively. Hb showed the lowest sensitivity compared with Mb and Cyt. C due to the role of steric hindrance in the hemeprotein specificity structure. This study offers a simple and efficient fabrication platform for electrochemical sensors for hemeproteins. When compared to other complex immobilization processes, the fabrication method for this sensor has many benefits, including no need for special chemicals and easy preparation and electrode modification-both of which are crucial for the development of electrochemical sensing devices.

13.
Heliyon ; 9(2): e13583, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36846669

ABSTRACT

An extremely reduced loss tangent while retaining ultrahigh dielectric permittivity can be successfully obtained in La1.9Sr0.1NiO4 ceramics by doping with Mg2+ ions. A single phase of La1.9Sr0.1NiO4 was detected in all the sintered ceramics, while the lattice parameters increased with increasing doping concentration, indicating that Mg2+ ions can enter the Ni2+ sites. A highly dense microstructure is achieved. Microstructural analysis revealed that Mg2+ ions disperse well in the microstructure of La1.9Sr0.1NiO4 ceramics. Interestingly, ultra-high dielectric permittivity of approximately 8.11 × 105 at 1 kHz is achieved in the La1.9Sr0.1Ni0.6Mg0.4O4 ceramic, while the loss tangent is significantly reduced by two orders of magnitude compared to the undoped La1.9Sr0.1NiO4 ceramic. The DC conductivity significantly decreased by three orders of magnitude. The giant dielectric responses are described by Maxwell-Wagner polarization and small polaron hopping mechanisms. Thus, the significant reduction in the loss tangent can be attributed to the significantly enhanced resistance of the grain boundaries.

14.
Heliyon ; 9(1): e12946, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704279

ABSTRACT

The effects of sintering conditions on the microstructure, giant dielectric response, and electrical properties of Na1/2Y1/2Cu3Ti3.975Ta0.025O12 (NYCTTaO) were studied. A single phase of Na1/2Y1/2Cu3Ti4O12 and a high density (>98.5%) were obtained in the sintered NYCTTaO ceramics. First-principles calculations were used to study the structure of the NYCTTaO. Insulating grain boundaries (i-GBs) and semiconducting grains (semi-Gs) were studied at different temperatures using impedance and admittance spectroscopies. The conduction activation energies of the semi-Gs and i-GBs were Eg ≈ 0.1 and Egb ≈ 0.6 eV, respectively. A large dielectric constant (ε' ≈ 2.43-3.89 × 104) and low loss tangent (tanδ ≈ 0.046-0.021) were achieved. When the sintering temperature was increased from 1070 to 1090 °C, the mean grain size slightly increased, while ε' showed the opposite tendency. Furthermore, the breakdown electric field (Eb) increases significantly. As the sintering time increased from 5 to 10 h, the mean grain size did not change, whereas ε' and Eb increased. Variations in the dielectric response and non-linear electrical properties were primarily described by the intrinsic (Egb) and extrinsic (segregation of Na-, Cu-, Ta-, and O-rich phases) properties of the i-GBs based on the internal barrier layer capacitor effect.

15.
Chemosphere ; 310: 136851, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36244425

ABSTRACT

The Sustainable Development Goals require that reducing waste is a priority. This work described the application of an innovative zero-waste hybrid ion exchange nanotechnology that concurrently removed nitrate and induced denitrification to ammonia, with the ability to generate fertilizer for the agriculture sector from the recycled by-products. Herein, hybrid cation exchanger-supported zero-valent iron (Fe0), and bimetallic Fe0/Pd nanoparticles (HCIX-Fe0 and HCIX-Fe0/Pd) were synthesized and successfully validated for denitrification of nitrate in spent waste brine that contained nitrate. The kinetics of nitrate catalysis by both HCIX-Fe0 and HCIX-Fe0/Pd were compared and presented by six kinetic models, namely, zero-order, pseudo first- and second-order reaction, pseudo first- and second-order adsorption, and Elovich. HCIX-Fe0/Pd displayed a higher kinetic value than HCIX-Fe0, with k1 of 0.0019 and 0.0026 min-1, respectively. Nitrate was predominantly catalysed to NH4+ at a ratio of ammonia to other nitrogen compounds of around 80:20. Although HCIX-Fe0/Pd showed slightly better (14%) kinetic results, it was determined as unfavourable for real-life application due to low selectivity toward N2 gas and the need to use H2 gas. Based on practicability, the HCIX-Fe0 was further validated. The effect of salt (using NaCl) and the role of initial pH conditions were optimized and discussed. The recovery of nitrate removal was also calculated, and a recovery range of 91.42-99.14% was obtained for three consecutive runs. The sustainable, novel, zero waste hybrid ion exchange nanotechnology using the combination of two fixed-bed columns containing nitrate-selective resin for nitrate removal and novel HCIX-Fe0 for nitrate reduction to NH4+ may be a promising sustainable solution toward the goal of discharging zero nitrate waste to the environment.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Nitrates/chemistry , Iron/chemistry , Palladium/chemistry , Denitrification , Ammonia , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/analysis , Nitrogen Oxides , Cations
16.
RSC Adv ; 12(39): 25578-25586, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199300

ABSTRACT

Magnetite (Fe3O4) and goethite (α-FeOOH) were synthesized via a hydrothermal approach and utilized as adsorbents for Cr6+ removal in an aqueous medium. The typical crystal structures of the synthesized Fe3O4 and α-FeOOH were confirmed by XRD and TEM. Fe3O4 in a spherical shape with a surface area of 32 m2 g-1 was established. While α-FeOOH had a rod-like form with a larger surface area of 84 m2 g-1. Cr6+ removal in an aqueous solution was studied in various conditions to evaluate thermodynamic and kinetic parameters. The adsorption isotherms on both adsorbents fit the Langmuir model indicating monolayer adsorption. Fe3O4 showed a better adsorption ability than α-FeOOH even though it had a lower surface area. XAS and XPS analysis strongly evidenced the production of stable Cr3+ species of Fe(1-x)Cr x OOH and Fe(3-x)Cr x O4 by Cr6+ reduction and migration processes into the bulk structure. Thus, the existence of stable Cr-species in Fe3O4 structure strongly affected Cr-adsorption ability rather than the surface area of the adsorbent. However, the precipitated Cr2O3 and HCrO4 - molecules electrostatically adsorbed on the outer surface of α-FeOOH without bulk transformation. The presence of physisorbed FeO-HCrO4 species on α-FeOOH led to low reducibility and adsorption capability of Cr6+.

17.
RSC Adv ; 12(40): 26111-26115, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36275102

ABSTRACT

In this research, we investigate the stability of a Li-ion cathode created by mixing a borate based glass which has been doped with Ni/Co and vanadium pentoxide (V2O5). V2O5 has a high specific capacity in battery systems because of its layered structure and variety of oxidation states. However, due to the flimsy structure, the capacity stability of V2O5 is fairly low. In this case, we seek to overcome the problem by mixing Ni/Co-doped borate based glass. The voltage-capacity graph demonstrates that the form of the glass mix was changed from a stairway shape to a straight line while the capacity was not much decreased. The crystallography study using X-ray diffractograms looked at whether the cycling test had changed the crystal structure of V2O5. The X-ray Absorption Near Edge Structure (XANES) results also reveal that V2O5's oxidation state changed from V5+ to V4+. The glass mix can retain more of the V5+ state, indicating that glass mixture helps to release the Li-ions trapped in the structure. The findings of this study might contribute to the rapid advancement of renewable energy and electric vehicle technology.

18.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296746

ABSTRACT

Activated carbon (AC) from sugarcane bagasse was prepared using dry chemical activation with KOH. It was then subjected to a high-energy ball milling (HEBM) treatment under various milling speeds (600, 1200 and 1800 rpm) to produce AC nanoparticles from micro-size particles. The AC samples after the HEBM treatment exhibited reduced particle sizes, increased mesopore volume and a rich surface oxygen content, which contribute to higher pseudocapacitance. Notably, different HEBM speeds were used to find a good electrochemical performance. As a result, the AC/BM12 material, subjected to HEBM at 1200 rpm for 30 min, exhibited the highest specific capacitance, 257 F g-1, at a current density 0.5 A g-1. This is about 2.4 times higher than that of the AC sample. Moreover, the excellence capacitance retention of this sample was 93.5% after a 3000-cycle test at a current density of 5 A g-1. Remarkably, a coin cell electrode assembly was fabricated using the AC/BM12 material in a 1 M LiPF6 electrolyte. It exhibited a specific capacitance of 110 F g-1 with a high energy density of 27.9 W h kg-1.

19.
Molecules ; 27(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36014551

ABSTRACT

The effects of the sintering conditions on the phase compositions, microstructure, electrical properties, and dielectric responses of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics prepared by a solid-state reaction method were investigated. A pure phase of the Na1/2Y1/2Cu3Ti4.1O12 ceramic was achieved in all sintered ceramics. The mean grain size slightly increased with increasing sintering time (from 1 to 15 h after sintering at 1070 °C) and sintering temperature from 1070 to 1090 °C for 5 h. The primary elements were dispersed in the microstructure. Low dielectric loss tangents (tan δ~0.018-0.022) were obtained. Moreover, the dielectric constant increased from ε'~5396 to 25,565 upon changing the sintering conditions. The lowest tan δ of 0.009 at 1 kHz was obtained. The electrical responses of the semiconducting grain and insulating grain boundary were studied using impedance and admittance spectroscopies. The breakdown voltage and nonlinear coefficient decreased significantly as the sintering temperature and time increased. The presence of Cu+, Cu3+, and Ti3+ was examined using X-ray photoelectron spectroscopy, confirming the formation of semiconducting grains. The dielectric and electrical properties were described using Maxwell-Wagner relaxation, based on the internal barrier layer capacitor model.

20.
Nanomaterials (Basel) ; 12(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35457993

ABSTRACT

In this work, a simple, facile growth approach for a vertically aligned ZnO thin film is fabricated and its application towards methane gas sensors is demonstrated. ZnO thin film was prepared by a combination of hydrothermal and sputtering methods. First, a ZnO seed layer was prepared on the substrate through a sputtering technique, then a ZnO nanorod was fabricated using a hydrothermal method. The surface morphology of the ZnO film was observed by scanning electron microscopy (SEM). A ZnO nanorod coated on the dense seed layer is clearly visible in the SEM image. The average size of the hexagonal-shaped ZnO rod was around 50 nm in diameter, with a thickness of about 1 mm. X-ray absorption near-edge structures (XANES) were recorded to characterize the structural properties of the prepared film. The obtained normalized Zn K-edge XANES of the film showed the characteristic features of ZnO, which agreed well with the standard ZnO sample. The measurement of Zn K-edge XANES was performed simultaneously with the sensing response. The results showed a good correlation between sensor response and ZnO structure under optimal conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...