Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Antimicrob Agents Chemother ; 65(11): e0067121, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34398671

ABSTRACT

Information on causative diarrheal pathogens and their associated antimicrobial susceptibility remains limited for Cambodia. This study describes antimicrobial resistance patterns for Shigella and nontyphoidal Salmonella isolates collected in Cambodia over a 5-year period. Multidrug resistance was shown in 98% of Shigella isolates, with 70%, 11%, and 29% of isolates being resistant to fluoroquinolones, azithromycin, and cephalosporin, respectively. As many as 11% of Shigella isolates were resistant to nearly all oral and parenteral drugs typically used for shigellosis, demonstrating extreme drug resistance phenotypes. Although a vast majority of nontyphoidal Salmonella isolates remained susceptible to cephalosporins (99%) and macrolides (98%), decreased susceptibility to ciprofloxacin was found in 67% of isolates, which is notably higher than previous reports. In conclusion, increasing antimicrobial resistance of Shigella and nontyphoidal Salmonella is a major concern for selecting empirical treatment of acute infectious diarrhea in Cambodia. Treatment practices should be updated and follow local antimicrobial resistance data for the identified pathogens.


Subject(s)
Shigella , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cambodia , Diarrhea/drug therapy , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , Salmonella
2.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33528566

ABSTRACT

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Subject(s)
Antimalarials/pharmacology , Biomarkers/metabolism , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Piperazines/therapeutic use , Protozoan Proteins/genetics , Quinolines/therapeutic use , Animals , Antimalarials/therapeutic use , Cambodia/epidemiology , Drug Resistance/drug effects , Malaria, Falciparum/epidemiology , Mefloquine/therapeutic use , Mutation/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Prevalence , Real-Time Polymerase Chain Reaction
3.
Am J Trop Med Hyg ; 103(2): 756-759, 2020 08.
Article in English | MEDLINE | ID: mdl-32394887

ABSTRACT

Clinical failure of primaquine (PQ) has been demonstrated in people with CYP450 2D6 genetic polymorphisms that result in reduced or no enzyme activity. The distribution of CYP2D6 genotypes and predicted phenotypes in the Cambodian population is not well described. Surveys in other Asian countries have shown an approximate 50% prevalence of the reduced activity CYP2D6 allele *10, which could translate into increased risk of PQ radical cure failure and repeated relapses, making interruption of transmission and malaria elimination difficult to achieve. We determined CYP2D6 genotypes from 96 volunteers from Oddor Meanchey Province, Cambodia, an area endemic for Plasmodium vivax. We found a 54.2% frequency of the *10 allele, but in approximately half of our subjects, it was paired with a normal activity allele, either *1 or *2. The prevalence of *5, a null allele, was 9.4%. Overall predicted phenotype percentages were normal metabolizers, 46%; intermediate metabolizers, 52%; and poor metabolizers, 1%.


Subject(s)
Antimalarials/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Artemisinins/therapeutic use , Asian People/genetics , Cambodia , Drug Therapy, Combination , Endemic Diseases , Gene Frequency , Genotype , Humans , Pharmacogenomic Variants , Phenotype , Plasmodium vivax , Polymorphism, Genetic , Quinolines/therapeutic use , Recurrence , Treatment Failure
4.
PLoS One ; 15(1): e0228207, 2020.
Article in English | MEDLINE | ID: mdl-32004348

ABSTRACT

BACKGROUND: Primaquine is an approved radical cure treatment for Plasmodium vivax malaria but treatment can result in life-threatening hemolysis if given to a glucose-6-phosphate dehydrogenase deficient (G6PDd) patient. There is a need for reliable point-of-care G6PD diagnostic tests. OBJECTIVES: To evaluate the performance of the CareStart™ rapid diagnostic test (RDT) in the hands of healthcare workers (HCWs) and village malaria workers (VMWs) in field settings, and to better understand user perceptions about the risks and benefits of PQ treatment guided by RDT results. METHODS: This study enrolled 105 HCWs and VMWs, herein referred to as trainees, who tested 1,543 healthy adult male volunteers from 84 villages in Cambodia. The trainees were instructed on G6PD screening, primaquine case management, and completed pre and post-training questionnaires. Each trainee tested up to 16 volunteers in the field under observation by the study staff. RESULTS: Out of 1,542 evaluable G6PD volunteers, 251 (16.28%) had quantitative enzymatic activity less than 30% of an adjusted male median (8.30 U/g Hb). There was no significant difference in test sensitivity in detecting G6PDd between trainees (97.21%), expert study staff in the field (98.01%), and in a laboratory setting (95.62%) (p = 0.229); however, test specificity was different for trainees (96.62%), expert study staff in the field (98.14%), and experts in the laboratory (98.99%) (p < 0.001). Negative predictive values were not statistically different for trainees, expert staff, and laboratory testing: 99.44%, 99.61%, and 99.15%, respectively. Knowledge scores increased significantly post-training, with 98.7% willing to prescribe primaquine for P.vivax malaria, an improvement from 40.6% pre-training (p < 0.001). CONCLUSION: This study demonstrated ability of medical staff with different background to accurately use CareStart™ RDT to identify G6PDd in male patients, which may enable safer prescribing of primaquine; however, pharmacovigilance is required to address possible G6PDd misclassifications.


Subject(s)
Diagnostic Tests, Routine , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Primaquine/adverse effects , Residence Characteristics , Adult , Cambodia , Female , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/metabolism , Humans , Malaria, Vivax/drug therapy , Male , Point-of-Care Systems , Primaquine/therapeutic use , Risk Assessment , Young Adult
5.
Open Forum Infect Dis ; 6(9): ofz314, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31660398

ABSTRACT

BACKGROUND: Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). METHODS: Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. RESULTS: Polymerase chain reaction-adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%-95%) and 92% for ASAP (95% CI, 83%-96%; P = .73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P < .001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P = .0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. CONCLUSIONS: Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine.

6.
Trials ; 19(1): 558, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30326952

ABSTRACT

BACKGROUND: Malaria remains a critical public health problem in Southeast Asia despite intensive containment efforts. The continued spread of multi-drug-resistant Plasmodium falciparum has led to calls for malaria elimination on the Thai-Cambodian border. However, the optimal approach to elimination in difficult-to-reach border populations, such as the Military, remains unclear. METHODS/DESIGN: A two-arm, cluster-randomized controlled, open-label pilot study is being conducted in military personnel and their families at focal endemic areas on the Thai-Cambodian border. The primary objective is to compare the effectiveness of monthly malaria prophylaxis (MMP) with dihydroartemisinin-piperaquine and weekly primaquine for 12 weeks compared with focused screening and treating (FSAT) following current Cambodian national treatment guidelines. Eight separate military encampments, making up approximately 1000 military personnel and their families, undergo randomization to the MMP or FSAT intervention for 3 months, with an additional 3 months' follow-up. In addition, each treatment cluster of military personnel and civilians is also randomly assigned to receive either permethrin- or sham (water)-treated clothing in single-blind fashion. The primary endpoint is risk reduction for malaria infection in geographically distinct military encampments based on their treatment strategy. Monthly malaria screening in both arms is done via microscopy, PCR, and rapid diagnostic testing to compare both the accuracy and cost-effectiveness of diagnostic modalities to detect asymptomatic infection. Universal glucose-6-phosphate dehydrogenase (G6PD) deficiency screening is done at entry, comparing the results from a commercially available rapid diagnostic test, the fluorescence spot test, and quantitative testing for accuracy and cost-effectiveness. The comparative safety of the interventions chosen is also being evaluated. DISCUSSION: Despite the apparent urgency, the key operational elements of proposed malaria elimination strategies in Southeast Asian mobile and migrant populations, including the Military, have yet to be rigorously tested in a well-controlled clinical study. Here, we present a protocol for the primary evaluation of two treatment paradigms - monthly malaria prophylaxis and focused screening and treatment - to achieve malaria elimination in a Cambodian military population. We will also assess the feasibility and incremental benefit of outdoor-biting vector intervention - permethrin-treated clothing. In the process, we aim to define the cost-effectiveness of the inputs required for success including a responsive information system, skilled human resource and laboratory infrastructure requirements, and quality management. Despite being a relatively low transmission area, the complexities of multi-drug-resistant malaria and the movement of vulnerable populations require an approach that is not only technically sound, but simple enough to be achievable. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02653898 . Registered on 13 January 2016.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Disease Eradication/methods , Malaria, Falciparum/prevention & control , Mass Screening/methods , Military Medicine , Military Personnel , Plasmodium falciparum/drug effects , Primaquine/administration & dosage , Quinolines/administration & dosage , Adolescent , Adult , Aged , Antimalarials/adverse effects , Artemisinins/adverse effects , Cambodia , Child , Child, Preschool , Drug Administration Schedule , Drug Combinations , Female , Humans , Insecticides , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Middle Aged , Mosquito Control/methods , Pilot Projects , Plasmodium falciparum/pathogenicity , Predictive Value of Tests , Primaquine/adverse effects , Protective Clothing , Quinolines/adverse effects , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome , Young Adult
7.
Am J Trop Med Hyg ; 99(5): 1145-1149, 2018 11.
Article in English | MEDLINE | ID: mdl-30226145

ABSTRACT

Gametocytes are the malaria parasite stages responsible for transmission from humans to mosquitoes. Gametocytemia often follows drug treatment, especially as therapies start to fail. We examined Plasmodium falciparum gametocyte carriage and drug resistance profiles among 824 persons with uncomplicated malaria in Cambodia to determine whether prevalent drug resistance and antimalarial use has led to a concentration of drug-resistant parasites among gametocyte carriers. Although report of prior antimalarial use increased from 2008 to 2014, the prevalence of study participants presenting with microscopic gametocyte carriage declined. Gametocytemia was more common in those reporting antimalarial use within the past year, and prior antimalarial use was correlated with higher IC50s to piperaquine and mefloquine, as well as to increased pfmdr1 copy number. However, there was no association between microscopic gametocyte carriage and parasite drug resistance. Thus, we found no evidence that the infectious reservoir, marked by those carrying gametocytes, is enriched with drug-resistant parasites.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Multiple , Malaria, Falciparum/blood , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Adult , Artemisinins/therapeutic use , Cambodia/epidemiology , Female , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/epidemiology , Male , Mefloquine/therapeutic use , Multidrug Resistance-Associated Proteins/economics , Plasmodium falciparum/genetics , Young Adult
8.
Malar J ; 16(1): 392, 2017 09 30.
Article in English | MEDLINE | ID: mdl-28964258

ABSTRACT

BACKGROUND: While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013-2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. RESULTS: Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013-4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. CONCLUSION: The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Enzyme-Linked Immunosorbent Assay/methods , Microscopy/methods , Plasmodium vivax/drug effects , Cambodia , DNA Copy Number Variations , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/growth & development
9.
PLoS One ; 12(6): e0168702, 2017.
Article in English | MEDLINE | ID: mdl-28591198

ABSTRACT

BACKGROUND: Single low dose primaquine (SLD PQ, 0.25mg/kg) is recommended in combination with artemisinin-based combination therapy (ACT) as a gametocytocide to prevent Plasmodium falciparum transmission in areas threatened by artemisinin resistance. To date, no randomized controlled trials have measured primaquine's effect on infectiousness to Anopheline mosquitoes in Southeast Asia. METHODS: Cambodian adults with uncomplicated falciparum malaria were randomized to receive a single 45mg dose of primaquine (equivalent to three SLD PQ) or no primaquine after the third dose of dihydroartemisin-piperaquine (DHP) therapy. A membrane-feeding assay measured infectiousness to Anopheles dirus on days 0, 3, 7, and 14 of blood-stage therapy. Gametocytemia was evaluated by microscopy and reverse-transcriptase PCR. RESULTS: Prior to trial halt for poor DHP treatment efficacy, 101 participants were randomized and 50 received primaquine. Overall microscopic gametocyte prevalence was low (9%), but gametocytemic subjects given primaquine were gametocyte-free by day 14, and significantly less likely to harbor gametocytes by day 7 compared to those treated with DHP-alone, who remained gametocytemic for a median of two weeks. Only one infectious subject was randomized to the primaquine group, precluding assessment of transmission-blocking efficacy. However, he showed a two-fold reduction in oocyst density of infected mosquitoes less than 24 hours after primaquine dosing. In the DHP-alone group, four subjects remained infectious through day 14, infecting roughly the same number of mosquitoes pre and post-treatment. Overall, microscopic gametocytemia was an excellent predictor of infectiousness, and performed better than submicroscopic gametocytemia post-treatment, with none of 474 mosquitoes infected post-treatment arising from submicroscopic gametocytes. CONCLUSIONS: In a setting of established ACT resistance, a single dose of 45mg primaquine added to DHP rapidly and significantly reduced gametocytemia, while DHP-alone failed to reduce gametocytemia and prevent malaria transmission to mosquitoes. Continued efforts to make single dose primaquine widely available are needed to help achieve malaria elimination.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Primaquine/administration & dosage , Adolescent , Adult , Animals , Anopheles/parasitology , Artemisinins/administration & dosage , Artemisinins/adverse effects , Dose-Response Relationship, Drug , Drug Combinations , Drug Resistance/drug effects , Female , Humans , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/pathogenicity
10.
Article in English | MEDLINE | ID: mdl-28193647

ABSTRACT

Despite the rising rates of resistance to dihydroartemisinin-piperaquine (DP), DP remains a first-line therapy for uncomplicated malaria in many parts of Cambodia. While DP is generally well tolerated as a 3-day DP (3DP) regimen, compressed 2-day DP (2DP) regimens were associated with treatment-limiting cardiac repolarization effects in a recent clinical trial. To better estimate the risks of piperaquine on QT interval prolongation, we pooled data from three randomized clinical trials conducted between 2010 and 2014 in northern Cambodia. A population pharmacokinetic model was developed to compare exposure-response relationships between the 2DP and 3DP regimens while accounting for differences in regimen and sample collection times between studies. A 2-compartment model with first-order absorption and elimination without covariates best fit the data. The linear slope-intercept model predicted a 0.05-ms QT prolongation per ng/ml of piperaquine (5 ms per 100 ng/ml) in this largely male population. Though the plasma half-life was similar in both regimens, peak and total piperaquine exposures were higher in those treated with the 2DP regimen. Furthermore, the correlation between the plasma piperaquine concentration and the QT interval prolongation was stronger in the population receiving the 2DP regimen. Neither the time since the previous meal nor the baseline serum magnesium or potassium levels had additive effects on QT interval prolongation. As electrocardiographic monitoring is often nonexistent in areas where malaria is endemic, 2DP regimens should be avoided and the 3DP regimen should be carefully considered in settings where viable alternative therapies exist. When DP is employed, the risk of cardiotoxicity can be mitigated by combining a 3-day regimen, enforcing a 3-h fast before and after administration, and avoiding the concomitant use of QT interval-prolonging medications. (This study used data from three clinical trials that are registered at ClinicalTrials.gov under identifiers NCT01280162, NCT01624337, and NCT01849640.).


Subject(s)
Antimalarials/adverse effects , Arrhythmias, Cardiac/chemically induced , Artemisinins/pharmacokinetics , Malaria, Falciparum/drug therapy , Myocardial Contraction/drug effects , Quinolines/pharmacokinetics , Antimalarials/therapeutic use , Artemisinins/adverse effects , Artemisinins/therapeutic use , Cambodia , Cardiotoxicity , Drug Therapy, Combination , Female , Humans , Malaria, Falciparum/parasitology , Male , Myocardial Contraction/physiology , Plasmodium falciparum/drug effects , Quinolines/blood , Quinolines/therapeutic use
11.
Malar J ; 15(1): 519, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27769299

ABSTRACT

BACKGROUND: The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. METHODS: Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ) resistance from sentinel sites on the Thai-Cambodian and Thai-Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV) histidine-rich protein 2 (HRP-2) assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. RESULTS: IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai-Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA), though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. CONCLUSIONS: Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in this region, and urgently requires alternative therapy. The temporary re-introduction of artesunate AS-MQ is the current response to PPQ resistance in this area, due to inverse MQ and PPQ resistance patterns. This will require careful monitoring for re-emergence of MQ resistance, and possible simultaneous resistance to all three drugs (AS, MQ and PPQ).


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antigens, Protozoan/analysis , Artemisinins/pharmacology , Cambodia , Humans , Inhibitory Concentration 50 , Mefloquine/pharmacology , Parasitic Sensitivity Tests , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Thailand
12.
Malar J ; 15: 17, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26747132

ABSTRACT

BACKGROUND: In addition to evidence for a protective role of antibodies to the malaria blood stage antigen merozoite surface protein 1 (MSP1), MSP1 antibodies are also considered as a marker of past malaria exposure in sero-epidemiological studies. METHODS: In order to better assess the potential use of MSP1 serology in malaria chemoprophylaxis trials in endemic areas, an analysis for the prevalence of antibodies to both Plasmodium falciparum and Plasmodium vivax MSP142 in healthy Cambodian adults was conducted at two sites as part of an active, observational cohort evaluating the efficacy of dihydroartemisinin-piperaquine (DP) for uncomplicated malaria (ClinicalTrials.gov identifier NCT01280162). RESULTS: Rates of baseline sero-positivity were high (59 and 73% for PfMSP142 and PvMSP142, respectively), and titers higher in those who lived in a higher transmission area, although there was little correlation in titers between the two species. Those volunteers who subsequently went on to develop malaria had higher baseline MSP142 titers than those who did not for both species. Titers to both antigens remained largely stable over the course of the 4-6 month study, except in those infected with P. falciparum who had multiple recurrences. CONCLUSION: These findings illuminate the difficulties in using MSP142 serology as either a screening criterion and/or biomarker of exposure in chemoprophylaxis studies. Further work remains to identify useful markers of malarial infection and/or immunity.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Falciparum/immunology , Merozoite Surface Protein 1/immunology , Adult , Antigens, Protozoan/immunology , Artemisinins/therapeutic use , Enzyme-Linked Immunosorbent Assay , Female , Humans , Malaria/drug therapy , Malaria/immunology , Malaria, Falciparum/drug therapy , Male , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Young Adult
13.
Antimicrob Agents Chemother ; 60(3): 1896-8, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26711753

ABSTRACT

Our recent report of dihydroartemisinin-piperaquine failure to treat Plasmodium falciparum infections in Cambodia adds new urgency to the search for alternative treatments. Despite dihydroartemisinin-piperaquine failure, and higher piperaquine 50% inhibitory concentrations (IC50s) following reanalysis than those previously reported, P. falciparum remained sensitive to atovaquone (ATQ) in vitro. There were no point mutations in the P. falciparum cytochrome b ATQ resistance gene. Mefloquine, artemisinin, chloroquine, and quinine IC50s remained comparable to those from other recent reports. Atovaquone-proguanil may be a useful stopgap but remains susceptible to developing resistance when used as blood-stage therapy.


Subject(s)
Antimalarials/therapeutic use , Atovaquone/therapeutic use , Drug Resistance, Multiple/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proguanil/therapeutic use , Artemisinins/therapeutic use , Base Sequence , Cambodia , DNA, Protozoan/genetics , Drug Combinations , Humans , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Quinolines/therapeutic use , Sequence Analysis, DNA , Thailand
14.
Malar J ; 14: 486, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26626127

ABSTRACT

BACKGROUND: There is currently no standardized approach for assessing in vitro anti-malarial drug susceptibility. Potential alterations in drug susceptibility results between fresh immediate ex vivo (IEV) and cryopreserved culture-adapted (CCA) Plasmodium falciparum isolates, as well as changes in parasite genotype during culture adaptation were investigated. METHODS: The 50 % inhibitory concentration (IC50) of 12 P. falciparum isolates from Cambodia against a panel of commonly used drugs were compared using both IEV and CCA. Results were compared using both histidine-rich protein-2 ELISA (HRP-2) and SYBR-Green I fluorescence methods. Molecular genotyping and amplicon deep sequencing were also used to compare multiplicity of infection and genetic polymophisms in fresh versus culture-adapted isolates. RESULTS: IC50 for culture-adapted specimens were significantly lower compared to the original fresh isolates for both HRP-2 and SYBR-Green I assays, with greater than a 50 % decline for the majority of drug-assay combinations. There were correlations between IC50s from IEV and CCA for most drugs assays. Infections were nearly all monoclonal, with little or no change in merozoite surface protein 1 (MSP1), MSP2, glutamate-rich protein (GLURP) or apical membrane antigen 1 (AMA1) polymorphisms, nor differences in P. falciparum multidrug resistance 1 gene (PfMDR1) copy number or single nucleotide polymorphisms following culture adaptation. CONCLUSIONS: The overall IC50 reduction combined with the correlation between fresh isolates and culture-adapted drug susceptibility assays suggests the utility of both approaches, as long as there is consistency of method, and remaining mindful of possible attenuation of resistance phenotype occurring in culture. Further study should be done in higher transmission settings where polyclonal infections are prevalent.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/drug effects , Adolescent , Adult , Cambodia , DNA, Protozoan/genetics , Genetic Variation , Genotype , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Young Adult
15.
Antimicrob Agents Chemother ; 59(8): 4631-43, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014942

ABSTRACT

Cambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Aged , Artemisinins/therapeutic use , Cambodia , Chloroquine/therapeutic use , Female , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/microbiology , Male , Mefloquine/therapeutic use , Membrane Transport Proteins/metabolism , Middle Aged , Multidrug Resistance-Associated Proteins/metabolism , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Young Adult
16.
Lancet Infect Dis ; 15(6): 683-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25877962

ABSTRACT

BACKGROUND: Dihydroartemisinin-piperaquine has been adopted as first-line artemisinin combination therapy (ACT) for multidrug-resistant Plasmodium falciparum malaria in Cambodia because of few remaining alternatives. We aimed to assess the efficacy of standard 3 day dihydroartemisinin-piperaquine treatment of uncomplicated P falciparum malaria, with and without the addition of primaquine, focusing on the factors involved in drug resistance. METHODS: In this observational cohort study, we assessed 107 adults aged 18-65 years presenting to Anlong Veng District Hospital, Oddar Meanchey Province, Cambodia, with uncomplicated P falciparum or mixed P falciparum/Plasmodium vivax infection of between 1000 and 200,000 parasites per µL of blood, and participating in a randomised clinical trial in which all had received dihydroartemisinin-piperaquine for 3 days, after which they had been randomly allocated to receive either primaquine or no primaquine. The trial was halted early due to poor dihydroartemisinin-piperaquine efficacy, and we assessed day 42 PCR-corrected therapeutic efficacy (proportion of patients with recurrence at 42 days) and evidence of drug resistance from the initial cohort. We did analyses on both the intention to treat (ITT), modified ITT (withdrawals, losses to follow-up, and those with secondary outcomes [eg, new non-recrudescent malaria infection] were censored on the last day of follow-up), and per-protocol populations of the original trial. The original trial was registered with ClinicalTrials.gov, number NCT01280162. FINDINGS: Between Dec 10, 2012, and Feb 18, 2014, we had enrolled 107 patients in the original trial. Enrolment was voluntarily halted on Feb 16, 2014, before reaching planned enrolment (n=150) because of poor efficacy. We had randomly allocated 50 patients to primaquine and 51 patients to no primaquine groups. PCR-adjusted Kaplan-Meier risk of P falciparum 42 day recrudescence was 54% (95% CI 45-63) in the modified ITT analysis population. We found two kelch13 propeller gene mutations associated with artemisinin resistance--a non-synonymous Cys580Tyr substitution in 70 (65%) of 107 participants, an Arg539Thr substitution in 33 (31%), and a wild-type parasite in four (4%). Unlike Arg539Thr, Cys580Tyr was accompanied by two other mutations associated with extended parasite clearance (MAL10:688956 and MAL13:1718319). This combination triple mutation was associated with a 5·4 times greater risk of treatment failure (hazard ratio 5·4 [95% CI 2·4-12]; p<0·0001) and higher piperaquine 50% inhibitory concentration (triple mutant 34 nM [28-41]; non-triple mutant 24 nM [1-27]; p=0·003) than other infections had. The drug was well tolerated, with gastrointestinal symptoms being the most common complaints. INTERPRETATION: The dramatic decline in efficacy of dihydroartemisinin-piperaquine compared with what was observed in a study at the same location in 2010 was strongly associated with a new triple mutation including the kelch13 Cys580Tyr substitution. 3 days of artemisinin as part of an artemisinin combination therapy regimen might be insufficient. Strict regulation and monitoring of antimalarial use, along with non-pharmacological approaches to malaria resistance containment, must be integral parts of the public health response to rapidly accelerating drug resistance in the region. FUNDING: Armed Forces Health Surveillance Center/Global Emerging Infections Surveillance and Response System, Military Infectious Disease Research Program, National Institute of Allergy and Infectious Diseases, and American Society of Tropical Medicine and Hygiene/Burroughs Wellcome Fund.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Aged , Antimalarials/pharmacology , Artemisinins/pharmacology , Cambodia , Cohort Studies , Female , Humans , Male , Middle Aged , Mutation, Missense , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Point Mutation , Protozoan Proteins/genetics , Quinolines/pharmacology , Randomized Controlled Trials as Topic , Treatment Failure , Young Adult
17.
Antimicrob Agents Chemother ; 58(10): 6056-67, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092702

ABSTRACT

Dihydroartemisinin-piperaquine, the current first-line drug for uncomplicated malaria caused by Plasmodium falciparum and Plasmodium vivax in Cambodia, was previously shown to be of benefit as malaria chemoprophylaxis when administered as a monthly 3-day regimen. We sought to evaluate the protective efficacy of a compressed monthly 2-day treatment course in the Royal Cambodian Armed Forces. The safety and efficacy of a monthly 2-day dosing regimen of dihydroartemisinin-piperaquine were evaluated in a two-arm, randomized, double-blind, placebo-controlled cohort study with 2:1 treatment allocation. Healthy military volunteers in areas along the Thai-Cambodian border where there is a high risk of malaria were administered two consecutive daily doses of 180 mg dihydroartemisinin and 1,440 mg piperaquine within 30 min to 3 h of a meal once per month for a planned 4-month period with periodic electrocardiographic and pharmacokinetic assessment. The study was halted after only 6 weeks (69 of 231 projected volunteers enrolled) when four volunteers met a prespecified cardiac safety endpoint of QTcF (Fridericia's formula for correct QT interval) prolongation of >500 ms. The pharmacodynamic effect on the surface electrocardiogram (ECG) peaked approximately 4 h after piperaquine dosing and lasted 4 to 8 h. Unblinded review by the data safety monitoring board revealed mean QTcF prolongation of 46 ms over placebo at the maximum concentration of drug in serum (Cmax) on day 2. Given that dihydroartemisinin-piperaquine is one of the few remaining effective antimalarial agents in Cambodia, compressed 2-day treatment courses of dihydroartemisinin-piperaquine are best avoided until the clinical significance of these findings are more thoroughly evaluated. Because ECG monitoring is often unavailable in areas where malaria is endemic, repolarization risk could be mitigated by using conventional 3-day regimens, fasting, and avoidance of repeated dosing or coadministration with other QT-prolonging medications. (This study has been registered at ClinicalTrials.gov under registration no. NCT01624337.).


Subject(s)
Antimalarials/adverse effects , Antimalarials/therapeutic use , Arrhythmias, Cardiac/chemically induced , Artemisinins/adverse effects , Artemisinins/therapeutic use , Malaria/drug therapy , Quinolines/adverse effects , Quinolines/therapeutic use , Adult , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Double-Blind Method , Female , Humans , Male , Quinolines/administration & dosage , Young Adult
18.
Malar J ; 13: 96, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24629047

ABSTRACT

The mechanism of massive intravascular haemolysis occurring during the treatment of malaria infection resulting in haemoglobinuria, commonly known as blackwater fever (BWF), remains unknown. BWF is most often seen in those with severe malaria treated with amino-alcohol drugs, including quinine, mefloquine and halofantrine. The potential for drugs containing artemisinins, chloroquine or piperaquine to cause oxidant haemolysis is believed to be much lower, particularly during treatment of uncomplicated malaria. Here is an unusual case of BWF, which developed on day 2 of treatment for uncomplicated Plasmodium falciparum infection with dihydroartemisinin-piperaquine (DHA-PIP) with documented evidence of concomitant seropositivity for Chikungunya infection.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Blackwater Fever/chemically induced , Blackwater Fever/diagnosis , Quinolines/therapeutic use , Adult , Antimalarials/adverse effects , Blackwater Fever/pathology , Drug Combinations , Humans , Male , Quinolines/adverse effects
19.
PLoS One ; 9(3): e93138, 2014.
Article in English | MEDLINE | ID: mdl-24667662

ABSTRACT

INTRODUCTION: Emerging antimalarial drug resistance in mobile populations remains a significant public health concern. We compared two regimens of dihydroartemisinin-piperaquine in military and civilians on the Thai-Cambodian border to evaluate national treatment policy. METHODS: Efficacy and safety of two and three-day regimens of dihydroartemisinin-piperaquine were compared as a nested open-label evaluation within a malaria cohort study in 222 otherwise healthy volunteers (18% malaria-infected at baseline). The first 80 volunteers with slide-confirmed Plasmodium falciparum or vivax malaria were randomized 1:1 to receive either regimen (total dose 360 mg dihydroartemisinin and 2880 mg piperaquine) and followed weekly for up to 6 months. The primary endpoint was malaria recurrence by day 42. Volunteers with vivax infection received primaquine at study discharge with six months follow-up. RESULTS: Eighty patients (60 vivax, 15 falciparum, and 5 mixed) were randomized to dihydroartemisinin-piperaquine. Intention-to-treat all-species efficacy at Day 42 was 85% for the two-day regimen (95% CI 69-94) and 90% for the three-day regimen (95% CI 75-97). PCR-adjusted falciparum efficacy was 75% in both groups with nearly half (45%) still parasitemic at Day 3. Plasma piperaquine levels were comparable to prior published reports, but on the day of recrudescence were below measurable in vitro piperaquine IC50 levels in all falciparum treatment failures. CONCLUSIONS: In the brief period since introduction of dihydroartemisinin-piperaquine, there is early evidence suggesting declining efficacy relative to previous reports. Parasite IC50 levels in excess of plasma piperaquine levels seen only in treatment failures raises concern for clinically significant piperaquine resistance in Cambodia. These findings warrant improved monitoring of clinical outcomes and follow-up, given few available alternative drugs. TRIAL REGISTRATION: ClinicalTrials.gov NCT01280162.


Subject(s)
Artemisinins/administration & dosage , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Military Personnel , Quinolines/administration & dosage , Quinolines/therapeutic use , Adult , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/pharmacokinetics , Cambodia/epidemiology , Drug Administration Schedule , Drug Resistance, Multiple , Humans , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Male , Models, Biological , Quinolines/pharmacokinetics , Recurrence
20.
Malar J ; 12: 217, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23802651

ABSTRACT

BACKGROUND: Despite recent malaria containment and control efforts leading to reduced incidence, Cambodia remains endemic for both Plasmodium vivax and multidrug-resistant Plasmodium falciparum malaria. Little has been reported in the peer-reviewed literature regarding the burden of severe malaria (SM) in Cambodia. METHODS: Medical records for all patients admitted to the Battambang Referral Hospital (BRH) with an admitting or discharge diagnosis of SM from 2006 to 2009 (suspected SM cases) were reviewed. Those meeting the case definition of SM according to retrospective chart review and investigator assessment of probable cases, based on published national guidelines available at the time, were analysed for trends in demographics, mortality and referral patterns. RESULTS: Of the 537 suspected SM cases at BRH during the study period, 393 (73%) met published WHO criteria for SM infection. Despite limited diagnostic and treatment facilities, overall mortality was 14%, with 7% mortality in children 14 and under, but 19% in adults (60% of cases). Cerebral malaria with coma was relatively rare (17%), but mortality was disproportionately high at 35%. Mean time to hospital presentation was five days (range one to 30 days) after onset of symptoms. While patients with delays in presentation had worse outcomes, there was no excess mortality based on treatment referral times, distance travelled or residence in artemisinin-resistance containment (ARC) Zone 1 compared to Zone 2. CONCLUSIONS: Despite limitations in diagnosis and treatment, and multiple confounding co-morbidities, mortality rates at BRH were similar to reports from other countries in the region. Interventions to improve access to early diagnosis and effective treatment, combined with modest improvements in intensive care, are likely to reduce mortality further. Patients referred from Zone 1 did not have excess mortality compared to Zone 2 ARC areas. A steep decrease in SM cases and deaths observed in the first half of 2009 has since continued, indicating some success from containment efforts despite the emergence of artemisinin resistance in this area.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/pathology , Malaria, Vivax/epidemiology , Malaria, Vivax/pathology , Adolescent , Adult , Antimalarials/therapeutic use , Cambodia/epidemiology , Child , Child, Preschool , Demography , Drug Resistance , Female , Humans , Malaria, Falciparum/complications , Malaria, Falciparum/mortality , Malaria, Vivax/complications , Malaria, Vivax/mortality , Male , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Retrospective Studies , Survival Analysis , Tertiary Care Centers , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...