Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 11809, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087367

ABSTRACT

Beta 1-3, 1-4 glucans ("beta-glucans") are one of the key components of the cell wall of cereals, complementing the main structural component cellulose. Beta-glucans are also an important source of soluble fibre in foods containing oats with claims of other beneficial nutritional properties such as plasma cholesterol lowering in humans. Key to the function of beta-glucans is their molecular weight and because of their high polydispersity - molecular weight distribution. Analytical ultracentrifugation provides a matrix-free approach (not requiring separation columns or media) to polymer molecular weight distribution determination. The sedimentation coefficient distribution is converted to a molecular weight distribution via a power law relation using an established procedure known as the Extended Fujita approach. We establish and apply the power law relation and Extended Fujita method for the first time to a series of native and processed oat beta-glucans. The application of this approach to beta-glucans from other sources is considered.


Subject(s)
Avena/chemistry , beta-Glucans/analysis , Molecular Weight , Ultracentrifugation/methods
2.
Food Hydrocoll ; 52: 749-755, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26726279

ABSTRACT

In the small intestine the nature of the environment leads to a highly heterogeneous mucus layer primarily composed of the MUC2 mucin. We set out to investigate whether the soluble dietary fibre sodium alginate could alter the permeability of the mucus layer. The alginate was shown to freely diffuse into the mucus and to have minimal effect on the bulk rheology when added at concentrations below 0.1%. Despite this lack of interaction between the mucin and alginate, the addition of alginate had a marked effect on the diffusion of 500 nm probe particles, which decreased as a function of increasing alginate concentration. Finally, we passed a protein stabilised emulsion through a simulation of oral, gastric and small intestinal digestion. We subsequently showed that the addition of 0.1% alginate to porcine intestinal mucus decreased the diffusion of fluorescently labelled lipid present in the emulsion digesta. This reduction may be sufficient to reduce problems associated with high rates of lipid absorption such as hyperlipidaemia.

3.
Crit Rev Food Sci Nutr ; 54(10): 1322-9, 2014.
Article in English | MEDLINE | ID: mdl-24564589

ABSTRACT

In the contemporary society, diabetes mellitus is considered as a common, growing, serious, costly, and potentially preventable public health problem. It is forecasted that in 2030, the number of people with diabetes will go up from 117 million in 2000 to 366 million in 2030. The prevalence of diabetes will place a huge burden on health and financial structures of countries, and these will impact on individuals, as well as families and nations. Polysaccharides, para-aminobenzoic acid, fixed oils, sterol, proteins, and peptides are biologically active ingredients, which are found in pumpkins. The chemicals within pumpkins such as the fruit pulp, oil from ungerminated seeds, and protein from germinated seeds have hypoglycemic properties. Preliminary investigation showed that pumpkin seeds, and the macromolecules, therein, such as Trigonelline (TRG), Nicotinic acid (NA), and D-chiro-inositol (DCI), possess hypoglycemic properties and could assist in maintaining glycemic control.


Subject(s)
Cucurbita/chemistry , Hypoglycemic Agents/pharmacology , Seeds/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Blood Glucose/metabolism , Diabetes Mellitus/drug therapy , Humans , Inositol/chemistry , Inositol/pharmacology , Niacin/chemistry , Niacin/pharmacology
4.
Food Chem ; 134(4): 1919-25, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23442639

ABSTRACT

Pumpkin, a member of the Cucurbitaceae family has been used frequently as functional medicines for therapeutic use. Several phytochemicals such as polysaccharides, phenolic glycosides, 13-hydroxy-9Z, 11E-octadecatrienoic acid from the leaves of pumpkin, proteins from germinated seeds, have been isolated. Here the influence of pH, ionic strength, and temperature on the properties and stability of oil bodies from pumpkin (Cucurbita) were determined with a view to patterning oil body size and structure for future therapeutic intervention. Oil bodies from pumpkin seeds were extracted, isolated, characterised using optical microscopy, zeta potential and particle size distribution obtained. During microscopic analysis, the oil bodies were more intact and in an integrated form at the time of extraction but were ruptured with time. Water extracted oil bodies were spherical for all four layers where cream had larger oil bodies then upper curd. Lower curd and supernatant had considerably smaller size with lower curd densely packed and seemed to be rich in oil bodies than any of the four layers. At pH 3, in the absence of salt, the zeta potential is approximately +30 mV, but as the salt concentration increases, the ζ potential rises at 10 mM but then decreases over the salt range. This trend continues for the upper curd, lower curd and the supernatant and the degree of the reduction (mV) in zeta potential is of the order cream

Subject(s)
Cucurbita/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Seeds/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Particle Size
5.
J Agric Food Chem ; 56(15): 6097-104, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-18624448

ABSTRACT

Acrylamide formation under controlled processing conditions was studied in a starch matrix by analyzing volatile compounds in the gas phase using online mass spectrometry. Compounds were identified using mass spectral analysis, authentic standards, and the labeling patterns from isotopically labeled asparagine and sugars. Acrylamide, 3-aminopropanamide, methylpyrazine, 3-oxopropanamide, and aminopropan-2-one were assigned to the ions at m/ z 72, 89, 95, 88, and 74, respectively. Ion m/ z 60 was proposed as the transamination product of glyoxal, but labeling experiments did not support this assignment. Temporal formation of acrylamide and related compounds was studied in 51 samples containing asparagine and selected sugars or carbonyls. Data from the experiments were analyzed to investigate correlations between the amounts of acrylamide, intermediates, and pyrazines formed. A strong correlation between 3-aminopropanamide and acrylamide was found in all samples, whereas other correlations were reactant specific. Preliminary multiway analysis of the data identified temporal similarities in the ion profiles and showed that dynamic monitoring can follow the production and utilization of intermediates leading to acrylamide.


Subject(s)
Acrylamide/chemical synthesis , Mass Spectrometry/methods , Acrylamide/analysis , Asparagine/chemistry , Fructose/chemistry , Glucose/chemistry , Hot Temperature , Pyruvaldehyde/chemistry , Software , Tandem Mass Spectrometry , beta-Alanine/analogs & derivatives , beta-Alanine/analysis
6.
Adv Exp Med Biol ; 561: 303-16, 2005.
Article in English | MEDLINE | ID: mdl-16438307

ABSTRACT

A system to monitor the formation of acrylamide in model systems and from real food products under controlled conditions of temperature, time and moisture content has been developed. By humidifying the gas that flows through the sample, some control over moisture content can be affected. Results are presented to show the validity and reproducibility of the technique and its ability to deliver quantitative data. The effects of different processing conditions on acrylamide formation and on the development of color, due to the Maillard reaction, are evaluated.


Subject(s)
Acrylamide/analysis , Food Analysis/methods , Maillard Reaction , Automation , Calibration , Chemical Phenomena , Chemistry, Physical , Chromatography, High Pressure Liquid , Cooking , Dose-Response Relationship, Drug , Food Handling , Humidity , Mass Spectrometry , Solanum tuberosum/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...