Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 13(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806246

ABSTRACT

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture "contacts up/base down" were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10-5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10-7 A and a photoconductivity between 4 × 10-9 and 7 × 10-9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.

2.
Heliyon ; 6(7): e04457, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32728640

ABSTRACT

The purpose of this work was to determine the tautomerism, the conformational analysis and photoreactivity of dehydroacetic acid (DHAA, 1). For that reason, the photolysis of DHAA (1) was performed at 254 nm and compared with two structurally similar compounds: 2-hydroxyacetophenone (HAP, 2) and 2-acetyl-1,3-cyclohexanodione (ACH, 3). We confirmed the degradation of 1 to acetic acid and we propose a mechanism on the assumption that a [2+2] cyclodimerization occurs (after UV light absorption) followed by some consecutive Norrish Type I cleavages, affording ketenes that end-up in acetic acid. The UV absorption study was conducted for all three compounds to gain insight about their electronic transitions, both experimentally and with computational simulations using TDDFT (B3LYP/6-31+G(d,p)) methods. A detailed analysis of the different tautomers and isomers that can be present in solution and the MOs involved in the electronic transitions was also achieved. The HOMO→LUMO transition was the least energetic optically active transition for 1 and 2, whereas 3 was recognized to have a HOMO-1→LUMO transition. These transitions were all of n→π∗ character.

SELECTION OF CITATIONS
SEARCH DETAIL