Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BDJ Open ; 10(1): 45, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839751

ABSTRACT

OBJECTIVES: The study explored the expression profile of miRNAs in Notch-activated periodontal ligament stem cells (PDLSCs) and examined their potential cellular targets. METHODS: PDLSCs were cultured and treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed together with enrichment, and miRNA expression was evaluated and validated using a quantitative polymerase chain reaction (qPCR). RESULTS: A total of 26 miRNAs were differentially expressed in Jagged1 treated PDLSCs compared with the controls. Pathway analysis revealed that altered miRNAs were significantly associated with the transforming growth factor ß (TGF-ß) signaling pathway. Target prediction analysis demonstrated that 11,170 genes as predictable targets of these altered miRNAs. Enrichment of predicted target genes revealed that they were related to ErbB, Ras and MAPK signaling pathways and small GTPase transduction. CONCLUSIONS: The research concludes that several miRNAs are differentially expressed in jagged-1 treated PDLSCs. In translational terms the differential functionality of these miRNAs offer promise for the development of targeted regenerative materials that are necessary for managing lost tissue replacement in periodontal diseases.

2.
Sci Rep ; 14(1): 6777, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514682

ABSTRACT

Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.


Subject(s)
Osteogenesis , Wnt Signaling Pathway , Humans , Osteogenesis/genetics , Proteomics , Dental Pulp , Extracellular Matrix/metabolism , Cell Differentiation , Stem Cells/metabolism , Cell Proliferation , Cells, Cultured
3.
Oral Dis ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243590

ABSTRACT

OBJECTIVES: This study investigated the miRNA expression profile in Notch-activated human dental stem pulp stem cells (DPSCs) and validated the functions of miRNAs in modulating the odonto/osteogenic properties of DPSCs. METHODS: DPSCs were treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed, and miRNA expression was validated. Odonto/osteogenic differentiation was examined using alkaline phosphatase staining, Alizarin Red S staining, as well as odonto/osteogenic-related gene and protein expression. RESULTS: Fourteen miRNAs were differentially expressed in Jagged1-treated DPSCs. Pathway analysis revealed that altered miRNAs were associated with TGF-ß, Hippo, ErbB signalling pathways, FoxO and Ras signalling. Target prediction analysis demonstrated that 7604 genes were predicted to be targets for these altered miRNAs. Enrichment analysis revealed relationships to various DNA bindings. Among differentially expressed miRNA, miR-296-3p and miR-450b-5p were upregulated under Jagged1-treated conditions. Overexpression of miR-296-3p and miR-450b-5p enhanced mineralization and upregulation of odonto/osteogenic-related genes, whereas inhibition of these miRNAs revealed opposing results. The miR-296-3p and miR-450b-5p inhibitors attenuated the effects of Jagged1-induced mineralization in DPSCs. CONCLUSIONS: Jagged-1 promotes mineralization in DPSCs that are partially regulated by miRNA. The novel understanding of these miRNAs could lead to innovative controlled mechanisms that can be applied to modulate biology-targeted dental materials.

4.
BMC Oral Health ; 24(1): 148, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297241

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of various toll-like receptor (TLR) and C-type lectin receptor (CLR) ligands on osteogenic differentiation in human dental pulp stem cells (hDPSCs). METHODS: hDPSCs were cultured and treated with various concentrations (0.01, 0.1, 1.0, and 10 µg/mL) of TLR or CLR agonists (PG-LPS, E.coli LPS, poly(I:C), Pam3CSK4, Furfurman, and Zymosan). Cell viability was determined by MTT assay. The effects of TLR and CLR agonists on osteogenic differentiation of hDPSCs were measured by alkaline phosphatase (ALP) activity, Alizarin Red S staining, and Von Kossa staining. In addition, the mRNA expression of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1) was examined by RT-qPCR. A non-parametric analysis was employed for the statistical analyses. The statistically significant difference was considered when p < 0.05. RESULTS: Treatment with TLR and CLR agonists was associated with an increase in hDPSCs' colony-forming unit ability. Compared with the control group, TLR and CLR agonists significantly inhibited the osteogenic differentiation of hDPSCs by decreasing the ALP activity, mineralised nodule formation, and mRNA expression levels of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1). The inhibition of TRIF but not Akt signalling rescued the effects of TLR and CLR agonist attenuating hDPSCs' mineralisation. CONCLUSIONS: The activation of TLRs or CLRs exhibited an inhibitory effect on osteogenic differentiation of hDPSCs via the TRIF-dependent signalling pathway.


Subject(s)
Dental Pulp , Osteogenesis , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cell Differentiation , Toll-Like Receptors/metabolism , Stem Cells , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/pharmacology , RNA, Messenger/metabolism , Cells, Cultured
5.
Int Endod J ; 57(2): 219-236, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37971040

ABSTRACT

AIM: To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY: hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 µM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS: RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION: IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.


Subject(s)
Dental Pulp , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Stem Cells , Cell Proliferation , Cytokines/metabolism , RNA, Messenger/metabolism , Cell Differentiation , Cells, Cultured
6.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430375

ABSTRACT

The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.


Subject(s)
Osteogenesis , Proteomics , Humans , Collagen Type VII/metabolism , Dental Pulp/metabolism , Extracellular Matrix/metabolism , Fibrillar Collagens/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Stem Cells/metabolism
7.
Sci Rep ; 12(1): 7583, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534526

ABSTRACT

Osteoblast differentiation requires the interaction of various cell signaling pathways to modulate cell responses. Notch and Wnt signaling are among the crucial pathways that control numerous biological processes, including osteo/odontogenic differentiation. The aim of the present study was to examine the involvement of Wnt signaling in the Jagged1-induced osteo/odontogenic differentiation in human dental pulp stem cells (hDPSCs). The Wnt-related gene expression was analyzed from publicly available data of Jagged1-treated human dental pulp cells. The mRNA expression of Wnt ligands (WNT2B, WNT5A, WNT5B, and WNT16) and Wnt inhibitors (DKK1, DKK2, and SOST) were confirmed using real-time polymerase chain reaction. Among the Wnt ligands, WNT2B and WNT5A mRNA levels were upregulated after Jagged1 treatment. In contrast, the Wnt inhibitors DKK1, DKK2, and SOST mRNA levels were downregulated. Recombinant WNT5A, but not WNT2B, significantly promoted in vitro mineral deposition by hDPSCs. Wnt signaling inhibition using IWP-2, but not DKK1, inhibited Jagged1-induced alkaline phosphatase (ALP) activity, mineralization, and osteo/odontogenic marker gene expression in hDPSCs. In conclusion, Jagged1 promoted hDPSC osteo/odontogenic differentiation by modulating the non-canonical Wnt pathway.


Subject(s)
Stem Cells , Wnt Signaling Pathway , Cell Differentiation , Cells, Cultured , Dental Pulp , Humans , Ligands , Odontogenesis , RNA, Messenger/metabolism
8.
Bioact Mater ; 18: 151-163, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35387159

ABSTRACT

Salivary glands (SG) are exocrine organs with secretory units commonly injured by radiotherapy. Bio-engineered organoids and extracellular vesicles (EV) are currently under investigation as potential strategies for SG repair. Herein, three-dimensional (3D) cultures of SG functional organoids (SGo) and human dental pulp stem cells (hDPSC) were generated by magnetic 3D bioassembly (M3DB) platforms. Fibroblast growth factor 10 (FGF10) was used to enrich the SGo in secretory epithelial units. After 11 culture days via M3DB, SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation. To consistently develop 3D hDPSC in vitro, 3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation. EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures. EV were characterized by nanoparticle tracking analysis, electron microscopy and immunoblotting. EV were in the exosome range for hDPSC (diameter: 88.03 ± 15.60 nm) and for SGo (123.15 ± 63.06 nm). Upon ex vivo administration, exosomes derived from SGo significantly stimulated epithelial growth (up to 60%), mitosis, epithelial progenitors and neuronal growth in injured SG; however, such biological effects were less distinctive with the ones derived from hDPSC. Next, these exosome biological effects were investigated by proteomic arrays. Mass spectrometry profiling of SGo exosomes predicted that cellular growth, development and signaling was due to known and undocumented molecular targets downstream of FGF10. Semaphorins were identified as one of the novel targets requiring further investigations. Thus, M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage.

9.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808935

ABSTRACT

Antioxidant agents are promising pharmaceuticals to prevent salivary gland (SG) epithelial injury from radiotherapy and their associated irreversible dry mouth symptoms. Epigallocatechin-3-gallate (EGCG) is a well-known antioxidant that can exert growth or inhibitory biological effects in normal or pathological tissues leading to disease prevention. The effects of EGCG in the various SG epithelial compartments are poorly understood during homeostasis and upon radiation (IR) injury. This study aims to: (1) determine whether EGCG can support epithelial proliferation during homeostasis; and (2) investigate what epithelial cells are protected by EGCG from IR injury. Ex vivo mouse SG were treated with EGCG from 7.5-30 µg/mL for up to 72 h. Next, SG epithelial branching morphogenesis was evaluated by bright-field microscopy, immunofluorescence, and gene expression arrays. To establish IR injury models, linear accelerator (LINAC) technologies were utilized, and radiation doses optimized. EGCG epithelial effects in these injury models were assessed using light, confocal and electron microscopy, the Griess assay, immunohistochemistry, and gene arrays. SG pretreated with EGCG 7.5 µg/mL promoted epithelial proliferation and the development of pro-acinar buds and ducts in regular homeostasis. Furthermore, EGCG increased the populations of epithelial progenitors in buds and ducts and pro-acinar cells, most probably due to its observed antioxidant activity after IR injury, which prevented epithelial apoptosis. Future studies will assess the potential for nanocarriers to increase the oral bioavailability of EGCG.


Subject(s)
Acinar Cells/drug effects , Acinar Cells/radiation effects , Catechin/analogs & derivatives , Radiation-Protective Agents/pharmacology , Salivary Glands/drug effects , Salivary Glands/radiation effects , Animals , Apoptosis/drug effects , Catechin/pharmacology , Cell Line , Epithelial Cells/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Immunohistochemistry , Oxidative Stress , Radiation Injuries/prevention & control
10.
Tissue Eng Part B Rev ; 27(2): 155-165, 2021 04.
Article in English | MEDLINE | ID: mdl-32723016

ABSTRACT

Xerostomia or dry mouth are commonly diagnosed in head and neck cancer patients due to salivary gland (SG) epithelial injury after radiotherapy. Regenerative medicine has fetched the opportunity to replace or regenerate the SG epithelia and restore its secretory function. Early adult stem cell transplantation strategies in rodents have recently shown to improve clinical outcomes in radiotherapy-induced xerostomia in Phase 1/2 human trials. Mesenchymal stem cells from adipose tissue are the most promising, although the ones from the labial mucosa, bone marrow, or dental pulp have an attractive therapeutic value after successful findings in ex vivo and in vivo mouse models of SG injury. Emerging approaches using cell-free therapy with cell "extracts", "soups" or secretome components also exhibit favorable outcomes in the same rodent models. When compared to cell-based approaches, extracellular vesicles (EV) from the secretome (i.e., exosomes) can be easily extracted, quantified, and are more stable for long-term storage and use in SG tissue engineering. Additive manufacturing and three-dimensional bioprinting or bioassembly have an important role on generating spheroids or organoids for cell transplantation to ameliorate SG injury. Moreover, organoids can secrete EV, which may have a therapeutic potential worth to explore in future studies. In this review, we will describe the technological advancements and challenges of these different cell-based and cell-free strategies in SG tissue engineering and regeneration. Impact statement Salivary gland (SG)-like innervated epithelial organoids and the secretome produced from stem cells may constitute feasible therapeutic alternatives to regenerate the SG due to their user-friendly, short-lived, consistent, and scalable additive manufacturing processes. Bioprinting such human SG organoids toward in vitro drug discovery may further reduce the incorporation of animal-derived components to the tissue constructs and minimize the use of animal experimentation in SG regeneration. Despite such advancements, transplantation with human adipose-derived mesenchymal stem cells is the only tissue engineering strategy that has reached Phase 1/2 clinical trials and shown to enlarge the serous SG epithelium and improve salivary flow.


Subject(s)
Bioprinting , Organoids , Animals , Humans , Mice , Salivary Glands , Stem Cells , Tissue Engineering
11.
Theriogenology ; 142: 222-228, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31629307

ABSTRACT

Disruption of the communication between the oocyte and granulosa cells is one of the major causes of poor development of in vitro grown ovarian follicles and oocytes. The present study investigated the effect of two cAMP modulators, cilostamide and forskolin, on in vitro growth of isolated dog secondary follicles and enclosed oocytes, communication between the gamete and surrounding granulosa cells, expression of GJA1 and GDF9, as well as cAMP level. Secondary follicles were incubated with cilostamide or forskolin alone or a combination of 20 µM cilostamide +1 µM forskolin, and the diameter of the incubated follicles and enclosed oocytes assessed every 72 h. Gap junction activity, GJA1 and GDF9 expression and cAMP level were assessed on Days 6 and 12 and transzonal projection (TZP) density was evaluated on Day 12. Neither cilostamide nor forskolin alone enhanced in vitro growth of dog follicles and the enclosed oocytes (P > 0.05). However, these two cAMP modulators dose dependently sustained gap junction activity and stimulated cAMP production compared with the non-supplemented control. Cilostamide at the high dosage (20 µM) also upregulated GJA1 expression. The combination of cilostamide and forskolin supported oocyte growth during the first 9 days and upregulated GJA1 and GDF9 expression at Day 12 of in vitro culture. This combination treatment also sustained gap junction activity, cAMP production, and increased TZP function (calcein intensity: TZP density ratio). The findings indicated that a combination of cilostamide and forskolin supported growth and survival of oocytes enclosed within cultured follicles by sustaining cAMP production and gap junction activity.


Subject(s)
Colforsin/pharmacology , Dogs , Gap Junctions/drug effects , Ovarian Follicle/drug effects , Quinolones/pharmacology , Animals , Cells, Cultured , Female , Gap Junctions/metabolism , Meiosis/drug effects , Oocytes/drug effects , Oocytes/physiology , Oogenesis/drug effects , Ovarian Follicle/cytology , Ovarian Follicle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...