Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 57(14): 1728-1741.e6, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35768000

ABSTRACT

Non-alcoholic steatotic liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD has a major effect on the intrinsic proliferative properties of hepatocytes. Here, we investigated the mechanisms underlying the activation of DNA damage response during NAFLD. Proliferating mouse NAFLD hepatocytes harbor replication stress (RS) with an alteration of the replication fork's speed and activation of ATR pathway, which is sufficient to cause DNA breaks. Nucleotide pool imbalance occurring during NAFLD is the key driver of RS. Remarkably, DNA lesions drive cGAS/STING pathway activation, a major component of cells' intrinsic immune response. The translational significance of this study was reiterated by showing that lipid overload in proliferating HepaRG was sufficient to induce RS and nucleotide pool imbalance. Moreover, livers from NAFLD patients displayed nucleotide pathway deregulation and cGAS/STING gene alteration. Altogether, our findings shed light on the mechanisms by which damaged NAFLD hepatocytes might promote disease progression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , DNA Damage , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Nucleotides , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
2.
Cell Rep ; 33(13): 108559, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378670

ABSTRACT

The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.


Subject(s)
Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , MRE11 Homologue Protein/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Bone Marrow Failure Disorders/genetics , Child , Child, Preschool , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Developmental Disabilities/genetics , Humans , Protein Binding , Protein Domains , Sequence Analysis, Protein , Sequence Deletion , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...