Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13316, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587218

ABSTRACT

Yamabushitake (Hericium erinaceus) is one of the most sought out mushrooms that is widely used for both direct consumption and medicinal purposes. While its demand increases worldwide, cultivation of the mushroom is limited to temperate areas and its production in tropical regions has never been explored. The aim of this study was to test the utilization of rubber and bamboo sawdust, alone or as a substrate mixture, for industrial scale Yamabushitake mushroom production. Five substrate treatments with various ratios of the two sawdust were compared for their physicochemical properties in relation to mushroom productivity. The highest mushroom fresh and dry (113.22 and 23.25 g, respectively), biological efficiency (42.61%), and cap size (9.53 cm) were obtained from the substrates containing 100% rubber sawdust, with the mushroom yield decreasing proportional to the ratio of bamboo sawdust. The 100% rubber sawdust substrate provided a higher initial organic matter and carbon content together with C:N ratio at 63.2%, 36.7% and 65.48, respectively, whereas the 100% bamboo sawdust provided higher nitrogen content (1.03%), which was associated with lower mushroom yield but higher number of fruiting bodies. As in the 100% rubber sawdust substrate, a comparable mushroom yield and growth attributes were also obtained in the 3:1 rubber-bamboo sawdust mixture substrate. Principle component analysis of the measured variables indicated a strong influence of substrate C:N ratio before spawning and the change in substrate electrical conductivity and N content after cultivation to the variation in mushroom productivity among the treatments. The results demonstrate the applicability of rubber sawdust and its combination with up to 25% of bamboo sawdust for Yamabushitake mushroom cultivation and provide the basis for substrate optimization in the tropical Yamabushitake mushroom industry through a circular economy framework.


Subject(s)
Agaricales , Rubber , Hericium , Carbon
2.
Plant Genome ; 15(1): e20189, 2022 03.
Article in English | MEDLINE | ID: mdl-34994516

ABSTRACT

Genetic diversity is important for developing salt-tolerant rice (Oryza sativa L.) cultivars. Certain Thai rice accessions display salt tolerance at the adult or reproductive stage, but their response to salinity at the seedling stage is unknown. In this study, a total of 10 rice cultivars/line, including eight Thai cultivars and standard salt-tolerant cultivar and susceptible line, were screened using a hydroponic system to identify salt-tolerant genotypes at the seedling stage. Different morphophysiological indicators were used to classify tolerant and susceptible genotypes. Phylogenetic analyses were performed to determine the evolutionary relationships between the cultivars. Results showed that 'Lai Mahk', 'Jao Khao', 'Luang Pratahn', and 'Ma Gawk' exhibited salt stress tolerance comparable with the standard salt-tolerance check 'Pokkali'. Whole-exome single-nucleotide polymorphism (SNP)-based phylogenetic analysis showed that the Thai rice cultivars were monophyletic and distantly related to Pokkali and IR29. Lai Mahk and Luang Pratahn were found closely related when using the whole-exome SNPs for the analysis. This is also the case for the analysis of SNPs from 164 salt-tolerance genes and transcription regulatory genes. The tolerant cultivars shared the same haplotype for 16 genes. Overall, the findings of this study identified four salt-stress-tolerant Thai rice cultivars, which could be used in rice breeding programs for salinity tolerance.


Subject(s)
Oryza , Oryza/genetics , Phylogeny , Plant Breeding , Salt Stress , Seedlings , Thailand
3.
Nat Plants ; 6(6): 675-685, 2020 06.
Article in English | MEDLINE | ID: mdl-32483330

ABSTRACT

Gene transcription is counterbalanced by messenger RNA decay processes that regulate transcript quality and quantity. We show here that the evolutionarily conserved DHH1/DDX6-like RNA hellicases of Arabidopsis thaliana control the ephemerality of a subset of cellular mRNAs. These RNA helicases co-localize with key markers of processing bodies and stress granules and contribute to their subcellular dynamics. They function to limit the precocious accumulation and ribosome association of stress-responsive mRNAs involved in auto-immunity and growth inhibition under non-stress conditions. Given the conservation of this RNA helicase subfamily, they may control basal levels of conditionally regulated mRNAs in diverse eukaryotes, accelerating responses without penalty.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , DEAD-box RNA Helicases/genetics , RNA Stability , RNA, Messenger/genetics , RNA, Plant/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , DEAD-box RNA Helicases/metabolism , RNA, Messenger/metabolism , RNA, Plant/metabolism , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...