Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597733

ABSTRACT

Enhanced glucose uptake in insulin-sensitive tissues is one of the therapeutic strategies to ameliorate hyperglycemia and maintain glucose homeostasis in type 2 diabetes. This study disclosed the role of fungal depsidones in glucose uptake and the underlying mechanism in 3T3-L1 adipocytes. Depsidones, including nidulin, nornidulin, and unguinol, isolated from Aspergillus unguis, stimulate glucose uptake in adipocytes. Compared to the others, nidulin exhibited an upward trend in glucose uptake. The effect of nidulin was found to be dose- and time-dependent. Nidulin also enhanced insulin- and metformin-stimulated glucose uptake. Upregulation of GLUT4 expression and AKT and AMPK phosphorylation were observed with nidulin treatment. Blockage of AKT, but not AMPK, phosphorylation was largely accompanied by diminished glucose uptake. In agreement, nidulin triggered the translocation of GLUT4 to the plasma membrane. Importantly, nidulin elevated glucose uptake associated with increased AKT phosphorylation in insulin-resistant adipocytes. Taken together, nidulin could stimulate glucose uptake mainly through AKT-dependent GLUT4 translocation, serving as a seed compound in drug discovery for type 2 diabetes.

2.
Food Microbiol ; 104: 103988, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35287811

ABSTRACT

Histamine is a biogenic amine significantly formed in fish sauce leading to a major concern in consumers. This study aimed to identify a halophilic bacterium for histamine degradation in fish sauce, and understand its genomic insight to enhance histamine degradation activity. We discovered the novel halophilic bacterium, Bacillus piscicola FBU1786, degrading histamine and other biogenic amines. Its histamine breakdown was growth-associated in a wide range of NaCl concentrations, pH, and temperature from 4% to 18%, 6.0 to 9.0, and 30 to 45 °C, respectively. Genome sequencing revealed the presence of Cu2+-binding oxidase-encoding genes and their heterologous expression with Cu2+ supplementation triggered histamine degradation in E. coli. The degree of histamine breakdown in B. piscicola FBU1786 could be enhanced by Cu2+ addition. Histamine degradation of the culture was evaluated in raw fish sauce mixtures to partially mimic the condition during fish sauce fermentation. Histamine degradation was suppressed to the extent of raw fish sauce, but could be restored by Cu2+ supplementation. Together, this study disclosed B. piscicola FBU1786 with the potent histamine degradation activity, identified Cu2+-binding oxidases responsible for histamine breakdown, and enhanced histamine degradation of the culture using Cu2+ supplementation.


Subject(s)
Escherichia coli , Histamine , Animals , Escherichia coli/genetics , Fishes , Food , Genomics
3.
Microbiol Immunol ; 64(10): 679-693, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32803887

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium [STM]) is a leading cause of nontyphoidal salmonellosis (NTS) worldwide. The pathogenesis of NTS has been studied extensively using a streptomycin-pretreated mouse colitis model with the limited numbers of laboratory STM strains. However, the pathogenicity of the clinically isolated STM (STMC) strains endemic in Thailand in mice has not been explored. The aim of this study was to compare the pathogenicity of STMC strains collected from Northern Thailand with the laboratory STM (IR715) in mice. Five STMC isolates were obtained from the stool cultures of patients with acute NTS admitted to Maharaj Nakorn Chiang Mai Hospital in 2016 and 2017. Detection of virulence genes and sequence type (ST) of the strains was performed. Female C57BL/6 mice were pretreated with streptomycin sulfate 1 day prior to oral infection with STM. On Day 4 postinfection, mice were euthanized, and tissues were collected to analyze the bacterial numbers, tissue inflammation, and cecal histopathological score. We found that all five STMC strains are ST34 and conferred the same or reduced pathogenicity compared with that of IR715 in mice. A strain-specific effect of ST34 on mouse gut colonization was also observed. Thailand STM ST34 exhibited a significant attenuated systemic infection in mice possibly due to the lack of spvABC-containing virulence plasmid.


Subject(s)
Colitis/pathology , Gastroenteritis/pathology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/pathogenicity , Adolescent , Adult , Aged , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Caco-2 Cells , Cell Line , Child , Child, Preschool , Disease Models, Animal , Disk Diffusion Antimicrobial Tests , Drug Resistance, Multiple, Bacterial/genetics , Female , Gastroenteritis/microbiology , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multilocus Sequence Typing , Plasmids/genetics , RAW 264.7 Cells , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Thailand , Virulence/genetics , Young Adult
4.
Fish Shellfish Immunol ; 106: 733-741, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32858186

ABSTRACT

Biofloc systems generate and accumulate microbial aggregates known as bioflocs. The presence of bioflocs has been shown to change gut bacterial diversity and stimulate innate immunity in shrimp. The microbial niche of bioflocs may therefore have the potential to drive shifts in the shrimp gut microbiota associated with stimulation of innate immunity. We performed shotgun metagenomic analysis and 16S rRNA-based amplicon sequencing to characterize complex bacterial members in bioflocs and the shrimp digestive tract, respectively. Moreover, we determined whether biofloc-grown shrimp with discrete gut microbiomes had an elevation in local immune-related gene expression and systemic immune activities. Our findings demonstrated that the bacterial community in bioflocs changed dynamically during Pacific white shrimp cultivation. Metagenomic analysis revealed that Vibrio comprised 90% of the biofloc population, while Pseualteromonas, Photobacterium, Shewanella, Alteromonas, Bacillus, Lactobacillus, Acinetobacter, Clostridium, Marinifilum, and Pseudomonas were also detected. In the digestive tract, biofloc-grown shrimp maintained the presence of commensal bacteria including Vibrio, Photobacterium, Shewanella, Granulosicoccus, and Ruegeria similar to control shrimp. However, Vibrio and Photobacterium were significantly enriched and declined, respectively, in biofloc-grown shrimp. The presence of bioflocs upregulated immune-related genes encoding serine proteinase and prophenoloxidase in digestive organs which are routinely exposed to gut microbiota. Biofloc-grown shrimp also demonstrated a significant increase in systemic immune status. As a result, the survival rate of biofloc-grown shrimp was substantially higher than that of the control shrimp. Our findings suggested that the high relative abundance of vibrios in bioflocs enriched the number of vibrios in the digestive tract of biofloc-grown shrimp. This shift in gut microbiota composition may be partially responsible for local upregulation of immune-related gene expression in digestive organs and systemic promotion of immune status in circulating hemolymph.


Subject(s)
Aquaculture , Gastrointestinal Microbiome , Penaeidae , Animals , Bacterial Physiological Phenomena , Immunity, Innate , Metagenomics , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/microbiology , RNA, Ribosomal, 16S
5.
Sci Rep ; 10(1): 10241, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581273

ABSTRACT

The safety of microbial cultures utilized for consumption is vital for public health and should be thoroughly assessed. Although general aspects on the safety assessment of microbial cultures have been suggested, no methodological detail nor procedural guideline have been published. Herein, we propose a detailed protocol on microbial strain safety assessment via whole-genome sequence analysis. A starter culture employed in traditional fermented pork production, nham, namely Lactobacillus plantarum BCC9546, was used as an example. The strain's whole-genome was sequenced through several next-generation sequencing techniques. Incomplete plasmid information from the PacBio sequencing platform and shorter chromosome size from the hybrid Oxford Nanopore-Illumina platform were noted. The methods for 1) unambiguous species identification using 16S rRNA gene and average nucleotide identity, 2) determination of virulence factors and undesirable genes, 3) determination of antimicrobial resistance properties and their possibility of transfer, and 4) determination of antimicrobial drug production capability of the strain were provided in detail. Applicability of the search tools and limitations of databases were discussed. Finally, a procedural guideline for the safety assessment of microbial strains via whole-genome analysis was proposed.


Subject(s)
Fermented Foods/microbiology , Lactobacillus plantarum/classification , Lactobacillus plantarum/growth & development , Whole Genome Sequencing/methods , Bacteriological Techniques , Food Safety , Genome Size , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Lactobacillus plantarum/genetics , Plasmids/genetics , RNA, Ribosomal, 16S/genetics
6.
Food Res Int ; 119: 110-118, 2019 05.
Article in English | MEDLINE | ID: mdl-30884638

ABSTRACT

A traditional Thai fermented pork, nham, is a product popularly consumed in Thailand. Fermentation of the protein-rich product by uncontrolled bacterial community can result in high amounts of hazardous biogenic amines (BA). This study aimed to unveil dynamics of microbial community and its relation to BA accumulation in nham. Three batches of nham were analyzed for pH, lactic acid bacteria population, concentrations of organic acids and BA. Bacterial communities were analyzed by pyrosequencing of 16S rRNA gene amplicons. In all batches, pH dropped to the quality standard of nham (≤4.6) within 3-5 days by production of lactic acid and acetic acid. Initial BA levels varied batch-by-batch and increased with fermentation time. In the highest quality batch, levels of histamine, tyramine, and total BA were within the recommended safety limits (200, 100 and 1000 mg/kg, respectively) throughout the 10-days study. However, in other batches, unsafe levels of tyramine and total BA were found after 5 days of fermentation. The results indicated that over-fermentation and inferior conditions of ingredients increased risk due to high levels of BA. Lactobacillus, Lactococcus, Pediococcus and Weissella were prevalent and comprised >90% of total bacteria during fermentation. Weissella was predominant in the batch with low BA while Lactobacillus and Pediococcus were predominant in the higher BA batches. A negative correlation between Weissella dominance and total BA was observed (r = -0.90, p = .003). A 10% increase in dominance of Weissella was associated with 75-170 mg/kg decrease in total BA. W. hellenica was the species prevalent only in low BA batch. Therefore, W. hellenica isolates were suggested as subjects for future study to develop efficient starter culture securing safety of nham.


Subject(s)
Bacteria/classification , Biogenic Amines/biosynthesis , Fermented Foods/microbiology , Meat Products/microbiology , Microbiota , Red Meat/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Batch Cell Culture Techniques , Bioreactors , Fermentation , Food Microbiology , Food Safety , High-Throughput Nucleotide Sequencing , Humans , Hydrogen-Ion Concentration , Metagenome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Swine , Thailand , Tyramine/metabolism , Weissella/isolation & purification , Weissella/metabolism
7.
Fish Shellfish Immunol ; 86: 4-13, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30419397

ABSTRACT

The use of probiotics in aquaculture is a practical alternative to promote animal health and disease prevention. Meanwhile, this practice can also reduce the use of prophylactic antibiotics. The purpose of this study was to identify candidate probiotics that could control pathogen populations in host's gastrointestinal (GI) tract and stimulate host immunity in shrimp aquaculture. Bacillus aryabhattai TBRC8450, a bacterial strain isolated from the environment in a shrimp farm, has an antimicrobial activity against many pathogenic strains of Vibrio harveyi and V. parahaemolyticus. Supplementation of B. aryabhattai to Pacific white shrimp (Litopenaeus vannamei) not only decreased the abundance of Vibrio populations, but also shifted the bacterial community in the shrimp GI tract. We found that supplementation of B. aryabhattai triggered shrimp innate immunity and antioxidant activities. mRNA expression of genes encoding microbial peptides and antioxidant enzymes, including C-type lectin, penaeidin-3, heat shock protein 60, thioredoxin, and ferritin, was significantly upregulated in the hepatopancreas of shrimp fed B. aryabhattai. Furthermore, phenoloxidase activity in the hemocytes and the total antioxidant activity in the plasma were increased, indicating enhanced immune and antioxidant responses at the systemic level. In contrast, supplementation of B. aryabhattai had no effect on the total hemocyte count and superoxide dismutase activity in the plasma and hepatopancreas. Importantly, a pathogen challenge test using V. harveyi 1562 showed a significant increase in survival rates of shrimp fed B. aryabhattai compared to the control group. Our findings suggest that B. aryabhattai TBRC8450 can likely be used as a probiotic to reduce the population of V. harveyi in the shrimp GI tract and to enhance shrimp innate immunity and antioxidant capacity for vibriosis resistance in shrimp aquaculture.


Subject(s)
Bacillus/physiology , Penaeidae/microbiology , Vibrio/physiology , Animals , Antioxidants/metabolism , Bacillus/genetics , Host Microbial Interactions , Host-Pathogen Interactions , Penaeidae/immunology , Phylogeny , Probiotics
8.
Toxicol Lett ; 299: 172-181, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30312686

ABSTRACT

The present study investigated the effect of lead (Pb) on bone ultrastructure and chemistry using an in vitro bone model. MC3T3-E1 preosteoblasts were differentiated and treated with lead acetate at 0.4, 2, 10, and 50 µM. No abnormalities in either cell growth or bone nodule formation were observed with the treated dose of lead acetate. However, Pb treatments could significantly increase Pb accumulation in differentiated osteoblast cultures and upregulate expression of Divalent metal transporter 1 (Dmt1) in a dose dependent manner. Pb treatments also altered the expression of osteogenic genes, including secreted phosphoprotein 1, osteocalcin, type I collagen, and osteoprotegerin. Moreover, in mineralized osteoblast cultures, Pb was found to be mainly deposited as Pb salts and oxides, respectively. Ultrastructure analysis revealed Pb localizing with calcium and phosphorus in the mineralized matrix. In mineralizing osteoblast cells, Pb was found in the intracellular calcified vesicles which is one of the bone mineralization mechanisms. Pb was also present in mineral deposits with various shapes and sizes, such as small and large globular or needle-like mineral deposits representing early to mature stages of mineral deposits. Furthermore, Pb was found more in the globular deposits than the needle shaped mineral crystals. Taken together, our observations revealed how Pb incorporates into bone tissue, and showed a close association with bone apatite.


Subject(s)
Cation Transport Proteins/metabolism , Cell Differentiation/drug effects , Environmental Pollutants/toxicity , Lead/toxicity , Osteoblasts/drug effects , Animals , Calcium/metabolism , Cation Transport Proteins/genetics , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Mice , Osteoblasts/ultrastructure , Phosphorus/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...