Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 16(7): 100558, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35696770

ABSTRACT

Protein metabolism and body composition have been identified as major determinants of residual feed intake (RFI) in beef cattle fed high-starch fattening diets. This study aimed to evaluate if these two identified RFI determinants in beef cattle are the same across two contrasting silage-based diets. During two consecutive years, an 84-day feed efficiency test (Test A) immediately followed by a second 112-day feed efficiency test (Test B) was carried out using a total of 100 animals offered either one of two diets (either corn silage- or grass silage-based) over 196 days. At the end of Test A, the 32 animals most divergent for RFI (16 extreme RFI animals per diet, eight low RFI and eight high RFI) were identified and evaluated during Test B for their i) N use efficiency (NUE; N retention/N intake) calculated either from a 10-d nitrogen balance trial or from estimations based on body composition changes occurring during the whole experiment (Test A and Test B; 196 days), ii) carcass and whole-body protein turnover rates analysed through the 3-methyl-histidine urinary excretion and the N isotopic turnover rates of urine, respectively, and iii) body composition measured at the slaughterhouse at the end of Test B. Oxygen consumption was measured during Test B for the 100 animals by two GreenFeed systems. Irrespective of the diet, efficient RFI animals tended (P = 0.08) to improve their NUE when N retention was estimated for 196 days or when considering their lower urinary urea-N to total N ratio (P = 0.03). In contrast, NUE calculated during the 10-d N balance showed no differences (P = 0.65) across RFI groups suggesting that this method may not be suitable to capture small NUE differences. Efficient RFI individuals presented higher dressing percentage and muscle deposition in the carcass (P = 0.003) but lighter rumen (P = 0.001), and a trend for lower oxygen consumption (P = 0.08) than inefficient RFI animals irrespective of the diet. Lower protein degradation rates of skeletal muscle and lower protein synthesis rates of plasma proteins were found in efficient RFI cattle but only with the corn silage-based diet (RFI × Diet; P = 0.02). The higher insulinaemia associated with the corn silage-based diet (P = 0.001) seemed to be a key metabolic feature explaining the positive association between protein turnover and RFI only in this diet. Feed N was more efficiently used for growth by efficient RFI animals regardless of the diet but lower protein turnover rates in efficient RFI animals were only observed with corn silage-based diets.


Subject(s)
Animal Feed , Diet , Animal Feed/analysis , Animals , Body Composition , Cattle , Diet/veterinary , Eating , Male , Oxygen Consumption , Zea mays
2.
Antioxidants (Basel) ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348697

ABSTRACT

Some epidemiological studies show that heme iron consumption, in red meat, is associated to the development of several chronic diseases, including cancers and cardio-metabolic diseases. As heme iron intestinal absorption is finely regulated, we hypothesized that heme iron may act indirectly, through the peroxidation of dietary lipids, in food or in the intestinal lumen during digestion. This heme-iron-induced lipid peroxidation provokes the generation of toxic lipid oxidation products that could be absorbed, such as 4-hydroxynonenal (HNE). In a first experiment, heme iron given to rats by oral gavage together with the linoleic-acid-rich safflower oil induced the formation of HNE in the intestinal lumen. The HNE major urinary metabolite was elevated in the urine of the treated rats, indicating that this compound has been absorbed. In a second experiment, we showed that stable isotope-labeled HNE given orally to rats was able to reach non-intestinal tissues as a bioactive form and to make protein-adducts in heart, liver and skeletal muscle tissues. The presence of HNE-protein adducts in those tissues suggests a putative biological role of diet-originating HNE in extra-intestinal organs. This finding could have major consequences on the onset/development of chronic diseases associated with red meat over-consumption, and more largely to peroxidation-prone food consumption.

3.
Cancer Prev Res (Phila) ; 11(9): 569-580, 2018 09.
Article in English | MEDLINE | ID: mdl-29954759

ABSTRACT

Red meat is probably carcinogenic to humans (WHO/IARC class 2A), in part through heme iron-induced lipoperoxidation. Here, we investigated whether red meat promotes carcinogenesis in rodents and modulates associated biomarkers in volunteers, speculating that an antioxidant marinade could suppress these effects via limitation of the heme induced lipid peroxidation. We gave marinated or non-marinated beef with various degrees of cooking to azoxymethane-initiated rats, Min mice, and human volunteers (crossover study). Mucin-depleted foci were scored in rats, adenoma in Min mice. Biomarkers of lipoperoxidation were measured in the feces and urine of rats, mice, and volunteers. The organoleptic properties of marinated meat were tested. Fresh beef increased colon carcinogenesis and lipoperoxidation in rats and mice and lipoperoxidation in humans. Without an adverse organoleptic effect on meat, marinade normalized peroxidation biomarkers in rat and mouse feces, reduced peroxidation in human feces and reduced the number of Mucin-depleted foci in rats and adenoma in female Min mice. This could lead to protective strategies to decrease the colorectal cancer burden associated with red meat consumption. Cancer Prev Res; 11(9); 569-80. ©2018 AACR.


Subject(s)
Carcinogenesis/pathology , Colonic Neoplasms/prevention & control , Cooking , Lipid Peroxidation/physiology , Red Meat/adverse effects , Adult , Animals , Azoxymethane/administration & dosage , Azoxymethane/toxicity , Biomarkers/analysis , Carcinogens/administration & dosage , Colonic Neoplasms/etiology , Cross-Over Studies , Feces/chemistry , Female , Healthy Volunteers , Heme/metabolism , Humans , Male , Mice , Middle Aged , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/prevention & control , Rats , Rats, Inbred F344
4.
Food Funct ; 7(8): 3497-504, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27418316

ABSTRACT

Hydroxyalkenals are lipid oxidation end-products resulting from the oxidation of polyunsaturated fatty acids (PUFA). This study aimed at quantifying the production of 4-hydroxy-2-nonenal-protein adducts (HNE-P) via Michael addition from n-6 PUFA oxidation in the gastric digesta of mini-pigs after the consumption of meat-based meals with different plant antioxidant contents. Using the accuracy profile procedure, we validated an extraction protocol for the quantification of HNE-P by GC-MS/MS in gastric contents. The formation of HNE-P in the gastric compartment was observed for the first time, with concentrations ranging from less than 0.52 to 1.33 nmol HNE-P per 500 mg digesta. Nevertheless, most gastric HNE-P levels were below the limit of quantification of 0.52 nmol HNE-P per 500 mg digesta. In this animal study, the protective effect of plant antioxidant sources on HNE-P formation was not evidenced contrasting with the results using TBARS as markers.


Subject(s)
Aldehydes/metabolism , Antioxidants/administration & dosage , Fatty Acids, Unsaturated/metabolism , Gastrointestinal Contents/chemistry , Gastrointestinal Tract/metabolism , Animals , Diet , Female , Gas Chromatography-Mass Spectrometry , Lipid Metabolism , Meals , Meat , Models, Animal , Oxidation-Reduction , Plants/chemistry , Reproducibility of Results , Swine , Swine, Miniature , Tandem Mass Spectrometry , Thiobarbituric Acid Reactive Substances/analysis
5.
Carcinogenesis ; 37(6): 635-645, 2016 06.
Article in English | MEDLINE | ID: mdl-26992899

ABSTRACT

Epidemiological studies have associated red meat intake with risk of colorectal cancer. Experimental studies explain this positive association by the oxidative properties of heme iron released in the colon. This latter is a potent catalyst for lipid peroxidation, resulting in the neoformation of deleterious aldehydes in the fecal water of heme-fed rats. The toxicity of fecal water of heme-fed rats was associated to such lipid peroxidation. This study demonstrated that fecal water of hemoglobin- and beef-fed rats preferentially induced apoptosis in mouse normal colon epithelial cells than in those carrying mutation on Apc (Adenomatous polyposis coli) gene, considered as preneoplastic. Highlighting the importance of lipid peroxidation and neoformation of secondary aldehydes like 4-hydroxy-2-nonenal (HNE), we optimized the depletion of carbonyl compounds in the fecal water which turned out to abolish the differential apoptosis in both cell lines. To explain the resistance of preneoplastic cells towards fecal water toxicity, we focused on Nrf2, known to be activated by aldehydes, including HNE. Fecal water activated Nrf2 in both cell lines, associated with the induction of Nrf2-target genes related to aldehydes detoxification. However, the antioxidant defense appeared to be higher in preneoplastic cells, favoring their survival, as evidenced by Nrf2 inactivation. Taken together, our results suggest that Nrf2-dependent antioxidant response was involved in the resistance of preneoplastic cells upon exposure to fecal water of hemoglobin- and beef-fed rats. This difference could explain the promoting effect of red meat and heme-enriched diet on colorectal cancer, by initiating positive selection of preneoplastic cells.


Subject(s)
Antioxidants/metabolism , Colorectal Neoplasms/etiology , Hemoglobins/pharmacology , NF-E2-Related Factor 2/metabolism , Red Meat/adverse effects , Aldehydes , Animals , Apoptosis , Colon/metabolism , Colon/pathology , Feces , Inactivation, Metabolic , Male , Mice , NF-E2-Related Factor 2/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...