Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 9(1): 1766192, 2020.
Article in English | MEDLINE | ID: mdl-32595915

ABSTRACT

Exosomes are nanovesicles released by all cells that can be found in the blood. A key point for their use as potential biomarkers in cancer is to differentiate tumour-derived exosomes from other circulating nanovesicles. Heat shock protein-70 (HSP70) has been shown to be abundantly expressed by cancer cells and to be associated with bad prognosis. We previously showed that exosomes derived from cancer cells carried HSP70 in the membrane while those from non-cancerous cells did not. In this work, we opened a prospective clinical pilot study including breast and lung cancer patients to determine whether it was possible to detect and quantify HSP70 exosomes in the blood of patients with solid cancers. We found that circulating exosomal HSP70 levels, but not soluble HSP70, reflected HSP70 content within the tumour biopsies. Circulating HSP70 exosomes increased in metastatic patients compared to non-metastatic patients or healthy volunteers. Further, we demonstrated that HSP70-exosome levels correlated with the disease status and, when compared with circulating tumour cells, were more sensitive tumour dissemination predictors. Finally, our case studies indicated that HSP70-exosome levels inversely correlated with response to the therapy and that, therefore, monitoring changes in circulating exosomal HSP70 might be useful to predict tumour response and clinical outcome.

2.
Article in English | MEDLINE | ID: mdl-32161659

ABSTRACT

BACKGROUND: Cancer is the second leading cause of death globally. Early detection and disease management lead to a better survival rate. Consequently, discovery of novel methods in cancer early diagnosis is a field of active research. Minimally invasive liquid biopsies are generating growing interest. Circulating tumour cells (CTCs) have been identified in patients' blood; nevertheless, these cells are rare and heterogeneous. Exosomes are extracellular nanovesicles released into the extracellular environment via the endosomal vesicle pathway and found in different body fluids. Exosomes deliver bioactive cargo such as proteins, mRNA and miRNA to recipient cells in the tumour environment. We have recently shown that heat shock protein 70 (HSP70) is detected in the membrane of tumour-derived exosomes, in contrast to normal cells. One single cancer cell can release thousands of HSP70-exosomes, facilitating detection. The aim of the pilot study ExoDiag is to determine whether it is possible to detect and quantify HSP70-exosomes in blood in patients with solid cancers. METHODS: Bicentric pilot study that will include 60 adult patients with metastatic and non-metastatic solid tumours and 20 healthy volunteers. Exosomes will be isolated from blood and urine samples, and HSP70 concentration will be determined. Patients will be followed for 1 year. The study is sponsored by Georges-François Leclerc Centre and is currently ongoing. DISCUSSION: We expect to demonstrate that HSP70-exosomes could be a powerful tool to diagnose cancer and to guide clinicians in therapeutic decision-making, improving patient's care. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02662621. Registered 20 January 2016, https://clinicaltrials.gov/ct2/show/study/NCT02662621?term=NCT02662621&rank=1.

3.
J Extracell Vesicles ; 9(1): 1710899, 2020.
Article in English | MEDLINE | ID: mdl-32002173

ABSTRACT

In the era of immunotherapies there is an urgent need to implement the use of circulating biomarkers in clinical practice to facilitate personalized therapy and to predict treatment response. We conducted a prospective study to evaluate the usefulness of circulating exosomal-PD-L1 in melanoma patients' follow-up. We studied the dynamics of exosomal-PD-L1 from 100 melanoma patients by using an enzyme-linked immunosorbent assay. We found that PD-L1 was secreted through exosomes by melanoma cells. Exosomes carrying PD-L1 had immunosuppressive properties since they were as efficient as the cancer cell from which they derive at inhibiting T-cell activation. In plasma from melanoma patients, the level of PD-L1 (n= 30, median 64.26 pg/mL) was significantly higher in exosomes compared to soluble PD-L1 (n= 30, 0.1 pg/mL). Furthermore, exosomal-PD-L1 was detected in all patients whereas only 67% of tumour biopsies were PD-L1 positive. Although baseline exosomal-PD-L1 levels were not associated with clinic-pathologic characteristics, their variations after the cures (ΔExoPD-L1) correlated with the tumour response to treatment. A ΔExoPD-L1 cut-off of> 100 was defined, yielding an 83% sensitivity, a 70% specificity, a 91% positive predictive value and 54% negative predictive values for disease progression. The use of the cut-off allowed stratification in two groups of patients statistically different concerning overall survival and progression-free survival. PD-L1 levels in circulating exosomes seem to be a more reliable marker than PD-L1 expression in tumour biopsies. Monitoring of circulating exosomal-PD-L1 may be useful to predict the tumour response to treatment and clinical outcome.

4.
Cancer Lett ; 469: 134-141, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31669516

ABSTRACT

Hsp70 is a highly conserved and inducible heat shock protein that belongs to the HSP70 family of molecular chaperones and plays a central role in protein homeostasis. The main function of Hsp70 is to protect cells from physiological, pathological and environmental insults, as it assists an ATP-dependent manner the process of protein folding. Since Hsp70 provides critical cell survival functions, cancer cells are assumed to rely on this chaperone. Strong evidence suggests that Hsp70 is upregulated in different type of cancers and is involved in tumor growth, invasion, migration and resistance to anti-cancer therapy. Interestingly, this Hsp70 upregulation induces Hsp70 re-location into plasma membrane. In this review, the role of Hsp70 in cancer will be discussed focusing particularly on the extracellular membrane-bound Hsp70. The mechanism by which Hsp70 is translocated to plasma membrane of tumor cells and the recent discoveries of drugs targeting this Hsp70 in cancer therapy will be also highlighted.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinogenesis/pathology , Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cell Membrane/drug effects , Cell Survival , Disease Progression , Exosomes/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Up-Regulation
5.
J Oncol ; 2019: 8585276, 2019.
Article in English | MEDLINE | ID: mdl-31737071

ABSTRACT

Colorectal cancer (CRC) is one of the major causes of cancer-related deaths worldwide. Tumor microenvironment (TME) contains many cell types including stromal cells, immune cells, and endothelial cells. The TME modulation explains the heterogeneity of response to therapy observed in patients. In this context, exosomes are emerging as major contributors in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, invasion, and premetastatic niche formation. They contain bioactive molecules such as proteins, lipids, and RNAs. More recently, many studies on exosomes have focused on miRNAs, small noncoding RNA molecules able to influence protein expression. In this review, we describe miRNAs transported by exosomes in the context of CRC and discuss their influence on TME and their potential as circulating biomarkers. This overview underlines emerging roles for exosomal miRNAs in cancer research for the near future.

6.
J Alzheimers Dis ; 71(4): 1263-1269, 2019.
Article in English | MEDLINE | ID: mdl-31498123

ABSTRACT

We aimed to study the expression of circulating heat-shock protein HSP70 and exosomes in plasma of a cohort of patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) at different stages. We performed correlations with clinical scales and FDG-PET. HSP70 levels were higher within exosomes than free in plasma. Moderate correlations were found between exosomal HSP70 and CDR, FTLD-CDR, and extension of hypometabolism. Our results suggest modifications in the level of exosomal HSP70 during the course of neurodegeneration, regardless of AD or FTD, and therefore HSP70 could have a potential role in the follow-up of these disorders.


Subject(s)
Alzheimer Disease/blood , Exosomes/metabolism , Frontotemporal Dementia/blood , HSP70 Heat-Shock Proteins , Aged , Alzheimer Disease/diagnosis , Biomarkers/blood , Biomarkers/metabolism , Correlation of Data , Female , Fluorodeoxyglucose F18/pharmacology , Frontotemporal Dementia/diagnosis , HSP70 Heat-Shock Proteins/blood , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Neuropsychological Tests , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacology
7.
Acta Derm Venereol ; 99(12): 1143-1147, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31449317

ABSTRACT

Exosomes are involved in modulating the immune system and mediating communication between cells. The aim of this study was to investigate the involvement of exosomes in psoriasis. Exosomes from patients with psoriasis were analysed by nanoparticle tracking analysis and protein expression was analysed by western blotting. The concentration of HSP70 was determined by an enzyme-linked immunosorbent assay, and concentrations of interleukin (IL)-1ß, IL-2, IL-6, IL-10, IL-17A and tumour necrosis factor alpha (TNF-α) were determined by flow cytometry. Based on the severity of psoriasis, evaluated by body surface area (≤ 10% vs. > 10%), 2 groups of patients were compared (49 with mild psoriasis and 71 with moderate-to-severe psoriasis). The number (2.52×1011 ± 2.29×1010 vs. 1.79×1011 ± 1.93×1010, p = 0.19) and size (94.44 ± 22.00 nm vs. 96.87 ± 28.30 nm, p = 0.72) of exosomes and the concentration of HSP70 in the exosomes were not significantly different in the 2 groups of patients. IL-17A exosome levels were significantly higher in patients with moderate-to-severe psoriasis compared with those with mild psoriasis (p = 0.02). There were no significant differences in levels of TNF-α, IL-1, IL-2, IL-6 and IL-10. This study shows, for the first time, the presence of circulating exosomes in patients with psoriasis. These data confirm the involvement of circulating exosomes in psoriasis, in particular in moderate-to-severe psoriasis, through IL-17A-producing exosomes.


Subject(s)
Exosomes/metabolism , Interleukin-17/blood , Psoriasis/blood , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Exosomes/immunology , Female , Humans , Male , Middle Aged , Prospective Studies , Psoriasis/diagnosis , Psoriasis/immunology , Severity of Illness Index , Up-Regulation , Young Adult
8.
Oncogene ; 38(15): 2767-2777, 2019 04.
Article in English | MEDLINE | ID: mdl-30542121

ABSTRACT

A multicenter clinical study demonstrated the presence of a loss-of-function HSP110 mutation in about 15% of colorectal cancers, which resulted from an alternative splicing and was produced at the detriment of wild-type HSP110. Patients expressing low levels of wild-type HSP110 had excellent outcomes (i.e. response to an oxaliplatin-based chemotherapy). Here, we show in vitro, in vivo, and in patients' biopsies that HSP110 co-localizes with DNA damage (γ-H2AX). In colorectal cancer cells, HSP110 translocates into the nucleus upon treatment with genotoxic chemotherapy such as oxaliplatin. Furthermore, we show that HSP110 interacts with the Ku70/Ku80 heterodimer, an essential element of the non-homologous end joining (NHEJ) repair machinery. We also demonstrate by evaluating the resolved 53BP1 foci that depletion in HSP110 impairs repair steps of the NHEJ pathway, which is associated with an increase in DNA double-strand breaks and in the cells' sensitivity to oxaliplatin. HSP110-depleted cells sensitization to oxaliplatin-induced DNA damage is abolished upon re-expression of HSP110. Confirming a role for HSP110 in DNA non-homologous repair, SCR7 and NU7026, two inhibitors of the NHEJ pathway, circumvents HSP110-induced resistance to chemotherapy. In conclusion, HSP110 through its interaction with the Ku70/80 heterodimer may participate in DNA repair, thereby inducing a protection against genotoxic therapy.


Subject(s)
Cell Nucleus/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA End-Joining Repair/genetics , HSP110 Heat-Shock Proteins/genetics , Mutagens/pharmacology , Translocation, Genetic/genetics , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Damage/genetics , DNA End-Joining Repair/drug effects , DNA-Binding Proteins/genetics , HCT116 Cells , Humans , Ku Autoantigen/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Oxaliplatin/pharmacology , Translocation, Genetic/drug effects
9.
Oncotarget ; 9(70): 33302-33311, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30279961

ABSTRACT

Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.

10.
Nat Commun ; 9(1): 1431, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650953

ABSTRACT

Heat shock protein 27 (HSP27/HSPB1) is a stress-inducible chaperone that facilitates cancer development by its proliferative and anti-apoptotic functions. The OGX-427 antisense oligonucleotide against HSP27 has been reported to be beneficial against idiopathic pulmonary fibrosis. Here we show that OGX-427 is effective in two murine models of thrombopoietin- and JAKV617F-induced myelofibrosis. OGX-427 limits disease progression and is associated with a reduction in spleen weight, in megakaryocyte expansion and, for the JAKV617F model, in fibrosis. HSP27 regulates the proliferation of JAK2V617F-positive cells and interacts directly with JAK2/STAT5. We also show that its expression is increased in both CD34+ circulating progenitors and in the serum of patients with JAK2-dependent myeloproliferative neoplasms with fibrosis. Our data suggest that HSP27 plays a key role in the pathophysiology of myelofibrosis and represents a new potential therapeutic target for patients with myeloproliferative neoplasms.


Subject(s)
HSP27 Heat-Shock Proteins/genetics , Janus Kinase 2/genetics , Oligonucleotides/pharmacology , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/genetics , STAT5 Transcription Factor/genetics , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Bone Marrow Transplantation , Cell Line, Tumor , Disease Models, Animal , Female , HEK293 Cells , HSP27 Heat-Shock Proteins/immunology , Humans , Janus Kinase 2/immunology , K562 Cells , Leukocytes/drug effects , Leukocytes/immunology , Leukocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Mutation , Primary Myelofibrosis/immunology , Primary Myelofibrosis/pathology , STAT5 Transcription Factor/immunology , Thrombopoietin/genetics , Thrombopoietin/immunology , Transduction, Genetic , Whole-Body Irradiation
11.
Oncotarget ; 8(23): 37681-37693, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445150

ABSTRACT

Inwardly rectifying potassium channels (Kir), and especially the barium-sensitive Kir4.1 encoded by KCNJ10, are key regulators of glial functions. A lower expression or mislocation of Kir4.1 is detected in human brain tumors. MicroRNAs participate in the regulation of ionic channels and associated neurologic disorders. Here, we analyze effects of miR-5096 on the Kir4.1 expression and function in two glioblastoma cell lines, U87 and U251. Using whole-cell patch-clamp and western-blot analysis, we show that cell loading with miR-5096 decreases the Kir4.1 protein level and associated K+ current. Cell treatment with barium, a Kir4.1 blocker, or cell loading of miR-5096 both increase the outgrowth of filopodia in glioma cells, as observed by time-lapse microscopy. Knocking-down Kir4.1 expression by siRNA transfection similarly increased both filopodia formation and invasiveness of glioma cells as observed in Boyden chamber assay. MiR-5096 also promotes the release of extracellular vesicles by which it increases its own transfer to surrounding cells, in a Kir4.1-dependent manner in U251 but not in U87. Altogether, our results validate Kir4.1 as a miR-5096 target to promote invasion of glioblastoma cells. Our data highlight the complexity of microRNA effects and the role of K+ channels in cancer.


Subject(s)
Glioblastoma/metabolism , MicroRNAs/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Cell Movement , Cells, Cultured , Humans , Pentamidine , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/pharmacology , Transfection
12.
Cell Adh Migr ; 11(2): 151-163, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28166442

ABSTRACT

During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' content can modify the physiological state of recipient cells. Tumor derived exosomes by interacting with other cells of the tumor microenvironment modulate tumor progression, angiogenic switch, metastasis, and immune escape. Targeting tumor-derived exosomes might be an interesting approach in cancer therapy. Furthermore, because a key issue to improve cancer patients' outcome relies on earlier cancer diagnosis (metastases, as opposed to the primary tumor, are responsible for most cancer deaths) exosomes have been put forward as promising biomarker candidates for cancer diagnosis and prognosis. This review summarizes the roles of exosomes in cancer and clinical interest, focusing on the importance of exosomal heat shock proteins (HSP). The challenges of clinical translation of HSP-exosomes as therapeutic targets and biomarkers for early cancer detection are also discussed.


Subject(s)
Exosomes/metabolism , Neoplasms/metabolism , Theranostic Nanomedicine/methods , Animals , Biomarkers, Tumor/metabolism , Drug Delivery Systems , Humans , Models, Biological , Neoplasms/diagnosis , Neoplasms/therapy
13.
J Am Chem Soc ; 137(26): 8521-5, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26056849

ABSTRACT

Visualization of DNA and RNA quadruplex formation in human cells was demonstrated recently with different quadruplex-specific antibodies. Despite the significant interest in these immunodetection approaches, dynamic detection of quadruplex in live cells remains elusive. Here, we report on NaphthoTASQ (N-TASQ), a next-generation quadruplex ligand that acts as a multiphoton turn-on fluorescent probe. Single-step incubation of human and mouse cells with N-TASQ enables the direct detection of RNA-quadruplexes in untreated cells (no fixation, permeabilization or mounting steps), thus offering a unique, unbiased visualization of quadruplexes in live cells.


Subject(s)
DNA/genetics , Fluorescent Dyes/chemistry , G-Quadruplexes , Microscopy, Fluorescence/methods , RNA/genetics , Animals , Biomimetics , Cations , Cell Line, Tumor , Chelating Agents/chemistry , Fluorescence Resonance Energy Transfer , Humans , Ligands , MCF-7 Cells , Melanoma, Experimental , Mice , Photons , RNA/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...