Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 62(12): 1403-10, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23362759

ABSTRACT

UNLABELLED: In the method termed "Other Test Method-10," the U.S. Environmental Protection Agency has proposed a method to quantify emissions from nonpoint sources by the use of vertical radial plume mapping (VRPM) technique. The surface area of the emitting source and the degree to which the different zones of the emitting source are contributing to the VRPM computed emissions are often unknown. The objective of this study was to investigate and present an approach to quantify the unknown emitting surface area that is contributing to VRPM measured emissions. Currently a preexisting model known as the "multiple linear regression model," which is described in Thoma et al. (2009), is used for quantifying the unknown surface area. The method investigated and presented in this paper utilized tracer tests to collect data and develop a model much like that described in Thoma et al. (2009). However unlike the study used for development of the multiple linear regression model, this study is considered a very limited study due to the low number of pollutant releases performed (seven total releases). It was found through this limited study that the location of an emitting source impacts VRPM computed emissions exponentially, rather than linearly (i.e., the impact that an emitting source has on VRPM measurements decreases exponentially with increasing distances between the emitting source and the VRPM plane). The data from the field tracer tests were used to suggest a multiple exponential regression model. The findings of this study, however, are based on a very small number of tracer tests. More tracer tests performed during all types of climatic conditions, terrain conditions, and different emissions geometries are still needed to better understand the variation of capture efficiency with emitting source location. This study provides a step toward such an objective. IMPLICATIONS: The findings of this study will aid in the advancement of the VRPM technique. In particular, the contribution of this study is to propose a slight improvement in how the area contributing to flux is determined during VRPM campaigns. This will reduce some of the technique's inherent uncertainties when it is employed to estimate emissions from an area source under nonideal conditions.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Remote Sensing Technology/methods , Optical Devices
2.
Science ; 332(6033): 1033; author reply 1033, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21617058

ABSTRACT

Kessler et al. (Reports, 21 January 2011, p. 312) reported that methane released from the 2010 Deepwater Horizon blowout, approximately 40% of the total hydrocarbon discharge, was consumed quantitatively by methanotrophic bacteria in Gulf of Mexico deep waters over a 4-month period. We find the evidence explicitly linking observed oxygen anomalies to methane consumption ambiguous and extension of these observations to hydrate-derived methane climate forcing premature.


Subject(s)
Environmental Pollution , Methane/metabolism , Oxygen/analysis , Petroleum , Proteobacteria/metabolism , Seawater/microbiology , Atlantic Ocean , Biodegradation, Environmental , Biomass , Hydrocarbons/analysis , Hydrocarbons/metabolism , Methane/analysis , Oxidation-Reduction , Oxygen Consumption , Proteobacteria/growth & development , Seawater/chemistry
3.
Waste Manag ; 31(5): 1002-8, 2011 May.
Article in English | MEDLINE | ID: mdl-20933379

ABSTRACT

Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollutants/metabolism , Air Pollution/statistics & numerical data , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Methane/analysis , Methane/metabolism , Oxidation-Reduction
4.
J Air Waste Manag Assoc ; 60(4): 460-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20437781

ABSTRACT

Landfills represent a source of distributed emissions source over an irregular and heterogeneous surface. In the method termed "Other Test Method-10" (OTM-10), the U.S. Environmental Protection Agency (EPA) has proposed a method to quantify emissions from such sources by the use of vertical radial plume mapping (VRPM) techniques combined with measurement of wind speed to determine the average emission flux per unit area per time from nonpoint sources. In such application, the VRPM is used as a tool to estimate the mass of the gas of interest crossing a vertical plane. This estimation is done by fitting the field-measured concentration spatial data to a Gaussian or some other distribution to define a plume crossing the vertical plane. When this technique is applied to landfill surfaces, the VRPM plane may be within the emitting source area itself. The objective of this study was to investigate uncertainties associated with using OTM-10 for landfills. The spatial variability of emission in the emitting domain can lead to uncertainties of -34 to 190% in the measured flux value when idealistic scenarios were simulated. The level of uncertainty might be higher when the number and locations of emitting sources are not known (typical field conditions). The level of uncertainty can be reduced by improving the layout of the VRPM plane in the field in accordance with an initial survey of the emission patterns. The change in wind direction during an OTM-10 testing setup can introduce an uncertainty of 20% of the measured flux value. This study also provides estimates of the area contributing to flux (ACF) to be used in conjunction with OTM-10 procedures. The estimate of ACF is a function of the atmospheric stability class and has an uncertainty of 10-30%.


Subject(s)
Air Pollution/analysis , Gases/analysis , Waste Management , Computer Simulation , Models, Chemical , Uncertainty , Wind
5.
Ground Water ; 47(4): 558-68, 2009.
Article in English | MEDLINE | ID: mdl-19341369

ABSTRACT

Submarine ground water discharge (SGD) is now recognized as an important water pathway between land and sea. It is difficult to quantitatively predict SGD owing to its significant spatial and temporal variability. This study focuses on quantitative estimation of SGD caused by tidally induced sea water recirculation and a terrestrial hydraulic gradient. A two-dimensional hydrogeological model was developed to simulate SGD from a coastal unconfined aquifer in the northeastern Gulf of Mexico, where previous SGD studies were performed. A density-variable numerical code, SEAWAT2000, was applied to simulate SGD. To accurately predict discharge, various influencing factors such as heterogeneity in conductivity, uncertain boundary conditions, and tidal pumping were systematically assessed. The tidally influenced sea water recirculation zone and the fresh water-salt water mixing zone under various tidal patterns, tidal ranges, and water table heights were also investigated. The model was calibrated and validated from long-term, intensive measurements at the study site. The percentage of fresh SGD relative to total SGD ranged from 4% to 50% under normal conditions. Based on simulations of two field measurements in summer and spring, respectively, the fresh water ratios were 9% and 15%, respectively. These results support the hypothesis that the SGD induced by tidally driven sea water recirculation is much larger than terrestrial fresh ground water discharge at this site. The estimates of total and fresh SGD are at the low and high ends, respectively, of the estimation ranges obtained from geochemical tracers (e.g., (222)Rn).


Subject(s)
Seawater/analysis , Water Movements , Environmental Monitoring
6.
Waste Manag ; 29(5): 1595-601, 2009 May.
Article in English | MEDLINE | ID: mdl-19131233

ABSTRACT

Previous publications described the performance of biocovers constructed with a compost layer placed on select areas of a landfill surface characterized by high emissions from March 2004 to April 2005. The biocovers reduced CH(4) emissions 10-fold by hydration of underlying clay soils, thus reducing the overall amount of CH(4) entering them from below, and by oxidation of a greater portion of that CH(4). This paper examines in detail the field observations made on a control cell and a biocover cell from January 1, 2005 to December 31, 2005. Field observations were coupled to a numerical model to contrast the transport and attenuation of CH(4) emissions from these two cells. The model partitioned the biocover's attenuation of CH(4) emission into blockage of landfill gas flow from the underlying waste and from biological oxidation of CH(4). Model inputs were daily water content and temperature collected at different depths using thermocouples and calibrated TDR probes. Simulations of CH(4) transport through the two soil columns depicted lower CH(4) emissions from the biocover relative to the control. Simulated CH(4) emissions averaged 0.0gm(-2)d(-1) in the biocover and 10.25gm(-2)d(-1) in the control, while measured values averaged 0.04gm(-2)d(-1) in the biocover and 14gm(-2)d(-1) in the control. The simulated influx of CH(4) into the biocover (2.7gm(-2)d(-1)) was lower than the simulated value passing into the control cell (29.4gm(-2)d(-1)), confirming that lower emissions from the biocover were caused by blockage of the gas stream. The simulated average rate of biological oxidation predicted by the model was 19.2gm(-2)d(-1) for the control cell as compared to 2.7gm(-2)d(-1) biocover. Even though its V(max) was significantly greater, the biocover oxidized less CH(4) than the control cell because less CH(4) was supplied to it.


Subject(s)
Air Pollution/prevention & control , Methane/chemistry , Models, Theoretical , Refuse Disposal , Soil , Chromatography, Gas , Computer Simulation , Oxidation-Reduction , Temperature , Water/chemistry
8.
Waste Manag ; 26(11): 1305-12, 2006.
Article in English | MEDLINE | ID: mdl-16426833

ABSTRACT

Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH(4) m(-2)d(-1) from the thin cover and the thick cover, respectively. The peak flux was 596 g m(-2)d(-1) for the thin cover and 330 g m(-2)d(-1) for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m(-2)d(-1) for the thick intermediate cover and 50.0 g m(-2)d(-1) for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH(4) mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Methane/analysis , Refuse Disposal/methods , Air Pollution/analysis , Biodegradation, Environmental , Carbon Isotopes , Environmental Monitoring , Florida , Oxidation-Reduction , Volatilization
9.
Waste Manag Res ; 24(6): 528-36, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17252999

ABSTRACT

This study evaluated two biofilter designs to mitigate methane emissions from landfill vents. Water-spreading biofilters were designed to use the capillarity of coarse sand overlain by a finer sand to increase the active depth for methane oxidation. Compost biofilters consisted of 238-L barrels containing a 1:1 mixture (by volume) of compost to expanded polystyrene pellets. Two replicates of each type of biofilter were tested at an outdoor facility. Gas inflow consisted of an approximately 1:1 mixture (by volume) of CH4 and CO2. Methane output rates (J(out); g m(-2) day(-1)) were measured using the static chamber technique and the Pedersen et al. (2001) diffusion model. Methane oxidation rate (J(ox); g m(-2) day(-1)) and fraction of methane oxidized (f(ox)) were determined by mass balance. For methane inflow rates (J(in)) between 250 and 500 g m(-2) day(-1), the compost biofilter J(ox), 242 g m(-2) day(-1), was not significantly different (P = 0.0647) than the water-spreading biofilter J(ox), 203 g m(-2) day(-1); and the compost f(ox), 69%, was not significantly different (P = 0.7354) than water-spreading f(ox), 63%. The water-spreading biofilter was shown to generally perform as well as the compost biofilter, and it may be easier to implement at a landfill and require less maintenance.


Subject(s)
Air Pollutants/metabolism , Air Pollution/prevention & control , Methane/metabolism , Refuse Disposal/methods , Bacteria/metabolism , Biodegradation, Environmental , Filtration , Oxidation-Reduction , Soil , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...