Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 51: 9-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25998753

ABSTRACT

Previously, our group has demonstrated that chronic paracetamol (APAP) treatment induces alterations to the trigeminovascular nociceptive system in the cortical spreading depression (CSD) migraine animal model. The calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular nociceptive system. Therefore, this study examined the expression levels of CGRP in the trigeminal ganglion (TG) after chronic APAP exposure (0, 15, and 30 days) using a CSD model. Rats were divided into control, CSD only, APAP only and APAP treatment with CSD groups. A single injection (i.p.) of APAP (200 mg/kg body weight) was given to the 0-day APAP-treated groups, while the other APAP-treated groups received daily injections for 15 and 30 days. CSD was induced by the topical application of KCl to the parietal cortex. The protein expression of CGRP in the TG was evaluated by immunohistochemistry, and the CGRP mRNA level was investigated by real-time quantitative reverse transcription polymerase chain reaction. The results revealed that the induction of CSD significantly increased the level of CGRP protein but had no effect on CGRP mRNA level. Pretreatment with APAP 1 hour before CSD activation significantly reduced CGRP expression induced by CSD. In contrast, chronic treatment with APAP (15 and 30 days) significantly enhanced CGRP expression in both protein and mRNA levels when compared with the control groups. In combination with CSD, the expression of CGRP further increased in the animal with 30 day treatment. These findings indicate that chronic treatment with APAP induces an increase of CGRP expression in the TG. This alteration may be associated with the increased trigeminovascular nociception observed in our previous studies.


Subject(s)
Acetaminophen/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Cortical Spreading Depression/drug effects , Migraine Disorders/metabolism , Trigeminal Ganglion/drug effects , Up-Regulation/drug effects , Animals , Calcitonin Gene-Related Peptide/genetics , Disease Models, Animal , Male , Parietal Lobe/drug effects , Parietal Lobe/metabolism , Rats , Rats, Wistar , Trigeminal Ganglion/metabolism
2.
Microvasc Res ; 94: 36-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24819686

ABSTRACT

Recently, a number of non-beneficial effects of chronic treatment with paracetamol (APAP) have been reported in several systems, including circulatory system. In this study, the effects of acute (1 hour) and chronic (30 days) APAP treatments on cerebral microvessels in a cortical spreading depression (CSD) migraine animal model were investigated. Rats were divided into control, CSD only, and APAP treatment with or without CSD groups. A single dose (200 mg/kg body weight) or once-daily APAP treatment over 30 days was intraperitoneally injected into the acute and chronic APAP treated groups, respectively. CSD was induced by topical application of potassium chloride on the parietal cortex. Ultrastructural alterations and the expressions of cell adhesion molecules (ICAM-1 and VCAM-1) of the cerebral microvessels were monitored in all experimental groups. The results demonstrated that the induction of CSD caused ultrastructural alterations of the cerebral endothelial cells, as indicated by increases in microvillous and pinocytic formations and swelling of the astrocytic foot plates. The expression of ICAM-1 was significantly elevated in the CSD groups as compared with the control groups. Pretreatment with APAP 1 hour prior to CSD activation attenuated the alterations induced by CSD. However, chronic APAP treatment resulted in an enhancement of the ultrastructural alterations and the expressions of cell adhesion molecules in the cerebral microvessels that were induced by CSD. Interestingly, the rats that received chronic APAP treatment alone exhibited higher degrees of ultrastructural alterations and ICAM-1 expression than those in the control group. Based on these results, we suggest that short-term treatment with APAP has no effect on cerebral microvessels and that chronic APAP treatment can alter cerebral microvasculature, especially when combined with CSD activation.


Subject(s)
Acetaminophen/administration & dosage , Cerebrovascular Circulation/drug effects , Cortical Spreading Depression , Microcirculation/drug effects , Microvessels/drug effects , Analgesics, Non-Narcotic/administration & dosage , Animals , Cell Adhesion , Endothelial Cells/drug effects , Immunohistochemistry , Intercellular Adhesion Molecule-1/metabolism , Male , Parietal Lobe/drug effects , Potassium Chloride/administration & dosage , Rats , Rats, Wistar , Time Factors , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...