Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 30(3): 4202-4214, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209662

ABSTRACT

This work presents a "half-etch" horizontal slot waveguide design based on SiN, where only the upper SiN layer is etched to form a strip that confines the mode laterally. The numerical modeling, fabrication, and characterization of passive waveguiding components are described. This novel slot waveguide structure was designed with on-chip light amplification in mind, for example with an Er-doped oxide spacer layer. Proof-of-concept racetrack resonators were fabricated and characterized, showing quality factors up to 50,000 at critical coupling and residual losses of 4 dB/cm at wavelengths away from the N-H bond absorption peak in SiN, demonstrating the high potential of these horizontal slot waveguides for use in active integrated photonics.

2.
ACS Appl Mater Interfaces ; 9(3): 3075-3084, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27977928

ABSTRACT

Silicon nitride is used for many technological applications, but a quantitative knowledge of its surface chemistry is still lacking. Native oxynitride at the surface is generally removed using fluorinated etchants, but the chemical composition of surfaces still needs to be determined. In this work, the thinning (etching efficiency) of the layers after treatments in HF and NH4F solutions has been followed by using spectroscopic ellipsometry. A quantitative estimation of the chemical bonds found on the surface is obtained by a combination of infrared absorption spectroscopy in ATR mode, X-ray photoelectron spectroscopy, and colorimetry. Si-F bonds are the majority species present at the surface after silicon nitride etching; some Si-OH and a few Si-NHx bonds are also present. No Si-H bonds are present, an unfavorable feature for surface functionalization in view of the interest of such mildly reactive groups for achieving stable covalent grafting. Mechanisms are described to support the experimental results, and two methods are proposed for generating surface SiH species: enriching the material in silicon, or submitting the etched surface to a H2 plasma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL