Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 99(6): 1101-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17468111

ABSTRACT

BACKGROUND AND AIMS: Tuberculate ectomycorrhizae are a unique form of ectomycorrhiza where densely packed clusters of mycorrhizal root tips are enveloped by a thick hyphal sheath to form a tubercle. The functional significance of such a unique structure has not previously been established. The purpose of the present study was to investigate and measure the potential nitrogenase activity associated with Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae in two stand ages, young and old, and across a range of nitrogen-poor soil conditions. METHODS: Short roots were compared with other mycorrhizae and non-mycorrhizal secondary roots using tuberculate ectomycorrhizae. Assessment of nitrogenase activity was determined and quantitative measurements were taken on tuberculate ectomycorrhizae in situ in a variety of different circumstances, by using an adaptation of the acetylene reduction assay. KEY RESULTS: Significant nitrogenase activity was measured associated with S. tomentosus/P. contorta tuberculate ectomycorrhizae whereas no nitrogenase activity was measured with non-tuberculate mycorrhizae or secondary roots without mycorrhizae. Average nitrogenase activity ranged from undetectable to 5696.7 nmol C2H4 g(-1) tubercle 24 h(-1). Maximum nitrogenase activity was 25,098.8 nmol C2H4 g(-1) tubercle 24 h(-1). Nitrogenase activity was significantly higher in young stands than in old stands of P. contorta. Season or some covariate also seemed to affect nitrogenase activity and there was suggestion of a site effect. CONCLUSIONS: Suillus tomentosus/P. contorta tuberculate ectomycorrhizae are sites of significant nitrogenase activity. The nitrogenase activity measured could be an important contribution to the nitrogen budget of P. contorta stands. Season and stand age affect levels of nitrogenase activity.


Subject(s)
Mycorrhizae/metabolism , Nitrogen Fixation , Pinus/metabolism , Mycorrhizae/growth & development , Nitrogenase/metabolism , Pinus/microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Seasons , Time Factors
2.
Can J Microbiol ; 47(9): 793-800, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11683460

ABSTRACT

The presence of other soil microorganisms might influence the ability of rhizobacterial inoculants to promote plant growth either by reducing contact between the inoculant and the plant root or by interfering with the mechanism(s) involved in rhizobacterially mediated growth promotion. We conducted the following experiments to determine whether reductions in the extent of growth promotion of lodgepole pine mediated by Paenibacillus polymyxa occur in the presence of a forest soil isolate (Pseudomonas fluorescens M20) and whether changes in plant growth promotion mediated by P. polymyxa (i) are related to changes in P. polymyxa density in the rhizosphere or (ii) result from alterations in root hormone levels. The extent of plant growth, P. polymyxa rhizosphere density, and root hormone concentrations were determined for lodgepole pine treated with (i) a single growth-promoting rhizobacterial strain (P. polymyxa L6 or Pw-2) or (ii) a combination of bacteria: strain L6 + strain M20 or strain Pw-2 + strain M20. There was no difference in the growth of pines inoculated with strain L6 and those inoculated with strain L6 + strain M20. However, seedlings inoculated with strain Pw-2 had more lateral roots and greater root mass at 12 weeks after inoculation than plants inoculated with strain Pw-2 + strain M20. The extent of growth promotion mediated by P. polymyxa L6 and Pw-2 in each treatment was not correlated to the average population density of each strain in the rhizosphere. Bacterial species-specific effects were observed in root hormone levels: indole-3-acetic acid concentration was elevated in roots inoculated with P. polymyxa L6 or Pw-2, while dihydrozeatin riboside concentration was elevated in roots inoculated with P. fluorescens M20.


Subject(s)
Bacillus , Pinus/microbiology , Pseudomonas fluorescens , Soil Microbiology , Bacillus/isolation & purification , Pinus/growth & development , Pinus/metabolism , Plant Growth Regulators/analysis , Plant Growth Regulators/biosynthesis , Plant Roots/metabolism , Plant Roots/microbiology , Pseudomonas fluorescens/isolation & purification , Species Specificity
3.
Can J Microbiol ; 47(3): 237-52, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11315115

ABSTRACT

Intact soil-core microcosms were used to compare persistence of Pseudomonas chlororaphis 3732RN-L11 in fallow soil and on wheat roots with field releases at diverse sites. Parallel field and microcosm releases at four sites in 1996 were repeated with addition of one site in 1997. Microcosms were obtained fresh and maintained at 60% soil water holding capacity in a growth chamber at 70% relative humidity, a 12-hour photoperiod, and constant temperature. Persistence of 3732RN-L11 was measured at each site in field plots and microcosms at 7-21 day intervals, and in duplicate microcosms sampled at an independent laboratory. Linear regression slopes of field plot and microcosm persistence were compared for each site, and between identical microcosms sampled at different sites, using log10 transformed plate counts. Microcosm persistence closely matched field plots for wheat roots, but persistence in fallow soil differed significantly in several instances where persistence in field plots was lower than in microcosms. Analysis of weather variations at each site indicated that rainfall events of 30-40 mm caused decreased persistence in fallow soil. Cooler temperatures enhanced persistence in field plots at later time points. Inter-laboratory comparison of regression slopes showed good agreement for data generated at different sites, though in two instances, longer sampling periods at one site caused significant differences between the sites. Soil characteristics were compared and it was found that fertility, namely the carbon to nitrogen ratio, and the presence of expanding clays, were related to persistence. These microcosm protocols produced reliable data at low cost, and were useable for pre-release risk analyses for microorganisms.


Subject(s)
Ecosystem , Pseudomonas/growth & development , Soil Microbiology , Agriculture , Genetic Engineering , Movement , Plant Roots/microbiology , Risk Assessment , Triticum/microbiology
4.
FEMS Microbiol Lett ; 142(2-3): 271-6, 1996 Sep 01.
Article in English | MEDLINE | ID: mdl-8810510

ABSTRACT

Microbial competition for carbon sources is a primary determinant of rhizosphere ecology. We employed the PCR to examine the population fluctuations of a symbiotic nitrogen-fixing bacterium (Rhizobium etli) during the first 11 days following inoculation of Phaseolus vulgaris seedlings grown in the presence or absence of a common asymbiotic rhizosphere resident (Bacillus polymyxa). When B. polymyxa was applied as a co-inoculant, increases in both early rhizobial root populations and final root population densities were observed as compared to single inoculation with R. etli. Modifications to host plant growth (including increased lateral root formation and nodules number) were found concomitant with elevations in R. etli populations on plants co-inoculated with both bacterial genera. In contrast to the in planta results, population enhancements were not observed when R. etli and B. polymyxa were co-cultured in vitro using minimal media in the absence of the seedling. Addition of seed exudate to the growth media also failed to stimulate the population increases observed during co-release in planta. These results suggest that B. polymyxa acts indirectly (i.e., via the plant host) to increase R. etli populations. Our observed synergism among co-resident bacteria supports the hypothesis that microbial communities which colonize the spermosphere may play a significant role in plant development and rhizosphere ecology.


Subject(s)
Bacillus/growth & development , Fabaceae/microbiology , Plants, Medicinal , Rhizobium/growth & development , Bacillus/genetics , Bacillus/isolation & purification , Coculture Techniques , Culture Media/metabolism , DNA, Bacterial/isolation & purification , Electrophoresis, Agar Gel , Plant Roots/microbiology , Polymerase Chain Reaction , Rhizobium/genetics , Rhizobium/isolation & purification , Seeds/metabolism , Symbiosis
5.
FEMS Microbiol Lett ; 133(1-2): 71-6, 1995 Nov 01.
Article in English | MEDLINE | ID: mdl-8566715

ABSTRACT

A polymerase chain reaction amplification of 23S rDNA was developed to identify Bacillus spp. recovered from roots, mycorrhizae, and rhizosphere soil of conifers. The polymerase chain reaction incorporated a conserved 23S rDNA forward primer in combination with a reverse primer designed to hybridize exclusively to nucleotide sequences of either B. polymyxa or B. mycoides. The amplification provided a rapid and simple means of identifying DNA from isolates of Bacillus, and could be used directly on whole Bacillus cells or mixed populations. The reaction was used to detect and differentiate these Gram-positive species from agar plates inoculated with samples from various conifer samples. A strain-specific primer was also synthesized and used to identify Bacillus which were established within conifer roots 4 weeks after inoculation.


Subject(s)
Bacillus/genetics , DNA Primers/genetics , Soil Microbiology , Trees/microbiology , Bacillus/isolation & purification , Base Sequence , DNA Fingerprinting , DNA, Ribosomal/analysis , Molecular Sequence Data , Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...