Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 7889, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801612

ABSTRACT

Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500-773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740-823 K. PAH carbonization at high pressure is the final stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and finally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km.

2.
Appl Spectrosc ; 71(8): 1842-1848, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28195496

ABSTRACT

The increasing demand for use of polymers at extreme conditions makes important the exploration of their behavior in a wide pressure and temperature range, which remains unknown for polytetrafluoroethylene (PTFE), one of the most common materials. An in situ Raman spectroscopic study of PTFE shows that it is stable within the range of 2-6 GPa at 500 ℃ and up to 12 GPa at 400 ℃. At T > 500 ℃ and P > 3.5 GPa, the graphitization of PTFE is observed, but judging from the preservation of liquid run products, PTFE can be used as a material for sample container up to 600 ℃ at this pressure. The obtained data allow the suggestion that the triple point between liquid, solid, and decomposed (carbonized) PTFE is located between 3 and 4 GPa at about 550 ℃, by analogy with the behavior of polycyclic aromatic hydrocarbons.

3.
J Chem Phys ; 140(16): 164508, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784288

ABSTRACT

In a wide range of P-T conditions, such fundamental characteristics as compressibility and thermoelastic properties remain unknown for most classes of organic compounds. Here we attempt to clarify this issue by the example of naphthalene as a model representative of polycyclic aromatic hydrocarbons (PAHs). The elastic behavior of solid naphthalene was studied by in situ synchrotron powder X-ray diffraction up to 13 GPa and 773 K and first principles computations to 20 GPa and 773 K. Fitting of the P-V experimental data to Vinet equation of state yielded T 0 = 8.4(3) GPa and T' = 7.2 (3) at V0 = 361 Å(3), whereas the thermal expansion coefficient was found to be extremely low at P > 3 GPa (about 10(-5) K(-1)), in agreement with theoretical estimation. Such a diminishing of thermal effects with the pressure increase clearly demonstrates a specific feature of the high-pressure behavior of molecular crystals like PAHs, associated with a low energy of intermolecular interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...