Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 363(1-2): 167-78, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22160856

ABSTRACT

The hypothesis of the present study is that cardiomyocytes subjected to prolonged ischemia, may release survival factors that will protect new cardiac cells from ischemic stress. We exposed neonatal rat cardiomyocyte primary cultures to hypoxia, collected the supernatant, treated intact cardiac cells by this posthypoxic supernatant, and exposed them to hypoxia. The results show cardioprotection of the treated cells compared with the untreated ones. We named the collected posthypoxic supernatant "conditioned medium" (CM), which acts in a dose-dependent manner to protect new cardiac cells from hypoxia: 100 or 75% of CM diluted in phosphate-buffered saline (PBS) protected cells as if they were not exposed to hypoxia (P < 0.001). When CM was removed from the cells before hypoxia, protection was not observed. CM also protected skeletal muscle cultures from hypoxia, but not cardiac cells against H(2)O(2)-induced cell damage. Finally, CM treatment protected the isolated heart in Langendorff set-up against ischemia. Smaller infarct size (9.9 ± 4.4% vs. 28.3 ± 8.5%, P < 0.05), better Rate Pressure Product (67 ± 11% vs. 48.6 ± 13.4%, P < 0.05) and better rate of contraction and relaxation were observed following ischemia and reperfusion (1341 ± 399 mmHg/s vs. 951 ± 349 mmHg/s, P < 0.05 and 1053 ± 347 mmHg/s vs. 736 ± 314 mmHg/s, P < 0.05). To conclude, there are factors that are released from the heart cells subjected to ischemia/hypoxia that protects cardiomyocytes from ischemic stress.


Subject(s)
Autocrine Communication , Myocardial Infarction/prevention & control , Myocardial Ischemia/prevention & control , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Cell Hypoxia , Cells, Cultured , Culture Media, Conditioned/metabolism , Hydrogen Peroxide/toxicity , Male , Muscle Fibers, Skeletal/metabolism , Myocardial Contraction , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Perfusion , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors , Ventricular Function , Ventricular Pressure
2.
Mol Cell Biochem ; 345(1-2): 153-60, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20730620

ABSTRACT

Activation of either the A(1) adenosine receptor (A(1)R) or the A(3) adenosine receptor (A(3)R), by their specific agonists CCPA and Cl-IB-MECA, respectively, protects cardiac cells in culture against ischemic injury. Yet the full protective mechanism remains unclear. In this study, we therefore examined the involvement of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) phosphorylation in this protective intracellular signaling mechanism. Furthermore, we investigated whether p38 MAPK phosphorylation occurs upstream or downstream from the opening of mitochondrial ATP-sensitive potassium (K(ATP)) channels. The role of p38 MAPK activation in the intracellular signaling process was studied in cultured cardiomyocytes subjected to hypoxia, that were pretreated with CCPA or Cl-IB-MECA or diazoxide (a mitochondrial K(ATP) channel opener) with and without SB203580 (a specific inhibitor of phosphorylated p38 MAPK). Cardiomyocytes were also pretreated with anisomycin (p38 MAPK activator) with and without 5-hydroxy decanoic acid (5HD) (a mitochondrial K(ATP) channel blocker). SB203580 together with the CCPA, Cl-IB-MECA or diazoxide abrogated the protection against hypoxia as shown by the level of ATP, lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Anisomycin protected the cardiomyocytes against ischemic injury and this protection was abrogated by SB203580 but not by 5HD. Conclusions Activation of A(1)R or A(3)R by CCPA or Cl-IB-MECA, respectively, protects cardiomyocytes from hypoxia via phosphorylation of p38 MAPK, which is located downstream from the mitochondrial K(ATP) channel opening. Elucidating the signaling pathway by which adenosine receptor agonists protect cardiomyocytes from hypoxic damage, will facilitate the development of anti ischemic drugs.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Adenosine A3 Receptor Agonists/pharmacology , Hypoxia/prevention & control , Myocytes, Cardiac/pathology , p38 Mitogen-Activated Protein Kinases/physiology , Adenosine/analogs & derivatives , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Heart , Hypoxia/diet therapy , Myocytes, Cardiac/drug effects , Phosphorylation , Potassium Channels , Protective Agents/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...