Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 18(21): e202300724, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37712336

ABSTRACT

Density functional theory (DFT) has provided a detailed mechanistic picture for the redox neutral nickel(II)-catalyzed arylative cyclization reactions of a tethered allene-ketone with arylboronic acids. A mechanistic rationale for the high diastereo- and enantioselectivity achieved experimentally at high reaction temperature was uncovered through modeling the reaction with a chiral ligand and the predicted stereochemical outcome corroborates with experimental results. An unprecedented mechanism for the base-free organoboron transmetalation was revealed and the regioselectivity of migratory insertion of tethered allene-ketones as well as the stability of the possible allylnickel isomers (σ-allyl vs π-allyl) were clarified. The multifaceted nature of the reaction is revealed with certain elementary steps preferring cationic compared to the neutral state.

2.
Chemistry ; 29(53): e202301701, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37414734

ABSTRACT

The crotylation reactions of chiral α-F, α-OBz and α-OH aldehydes under Petasis-borono-Mannich conditions using (E)- or (Z)-crotylboronates and primary amines resulted in γ-addition products in high dr and high er. α-F and α-OBz aldehydes gave 1,2-anti-2,3-syn and 1,2-anti-2,3-anti, products, respectively while an α-OH aldehyde gave 1,2-syn-2,3-syn products. The stereochemical outcomes of reactions of the former aldehydes can be explained using a six-membered ring transition state (TS) model in which a Cornforth-like conformation around the imine intermediate is favoured resulting in 1,2-anti products. The 2,3-stereochemical outcome is dependent upon the geometry of the crotylboronate. These TS models were also supported by DFT calculations. The stereochemical outcomes of reactions employing an α-OH aldehyde can be rationalised as occurring via an open-TS involving H-bonding in the imine intermediate between the α-OH group and the imine N atom. Representative products were converted to highly functionalized 1,2,3,6-tetrahydropyridines and 3H-oxazolo[3,4-a]pyridine-3-ones which will be valuable scaffolds in synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...