Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 15: 874903, 2022.
Article in English | MEDLINE | ID: mdl-35571371

ABSTRACT

Small extracellular vesicles (sEVs) miRNAs are promising diagnosis and prognosis biomarkers for ischemic stroke (IS). This study aimed to determine the impact of IS on the serum sEVs miRNA profile of IS patients and a transient middle cerebral artery occlusion (tMCAO) mouse model. Small RNAseq was used to define the serum sEVs miRNA profile in IS patients and healthy controls (HC), and tMCAO mice and sham controls. Among the 1,444 and 1,373 miRNAs identified in human and mouse serum sEVs, the expression of 424 and 37 miRNAs was significantly altered in the IS patients and tMCAO mice, respectively (| Log2FC| ≥ 1, p < 0.01). Notably, five of the top 25 upregulated miRNAs in IS patients were brain-specific or enriched, including hsa-miR-9-3p, hsa-miR-124-3p, hsa-miR-143-3p, hsa-miR-98-5p, and hsa-miR-93-5p. Upregulation of these four miRNAs was further validated by qPCR. Nine of the 20 upregulated miRNAs in tMCAO mice were also brain-specific or enriched miRNAs. Temporal analysis indicated that the dynamics of mmu-miR-9-5p, mmu-miR-124-3p, mmu-miR-129-5p, and mmu-miR-433-3p were closely correlated with the evolution of ischemic brain injury, as their expression increased at 0.5 days after the onset of ischemia, peaked at day 1 or 3, and returned to normal levels at day 7 and 14. Notably, with the exceptions of mmu-miR-128-3p, the expression of the other eight miRNAs in the mouse serum sEVs was unaffected in the lipopolysaccharide (LPS)-induced neuroinflammation model. Together, in this study, we provided a comprehensive view of the influences of IS on the serum sEVs miRNA profile of IS patients and tMCAO mice and demonstrated the increment of a set of brain-specific miRNAs in serum sEVs after acute cerebral ischemia, which could be promising candidates directly reflecting the ischemic brain injury.

2.
Neurosci Lett ; 766: 136307, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34737022

ABSTRACT

Microglial M1 activation is detrimental to stroke outcomes. Recent studies have shown that circulating small extracellular vesicles (sEVs) can deliver miRNAs to target cells and regulate recipient cell functions. Herein, we tested the hypothesis that miRNA delivery by serum sEVs after cerebral ischemia/reperfusion (I/R) injury promote microglial M1 activation, demonstrating that serum sEVs from middle cerebral artery occlusion (MCAO) mice promoted proliferation and M1 activation of BV2 microglia. To explore the underlying mechanism of serum sEVs-mediated microglial activation in the early phase of cerebral I/R injury, we examined the effects of ischemic brain injury on the serum sEVs miRNAs profile in a mouse MCAO model using small RNAseq. Of the 1257 detected miRNA replications, the levels of 72 were significantly modulated. Bioinformatics analysis revealed that a panel of miRNAs was closely associated with inflammation, and in vitro experiments demonstrated that serum sEVs from MCAO mice could effectively transfer inflammatory miRNAs to BV2 microglia. Collectively, our data suggested that miRNAs delivered by serum sEVs after cerebral I/R injury promoted microglial M1 activation. The identification of microglial activation regulators in future studies will give rise to more effective treatments for stroke.


Subject(s)
Brain Ischemia/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Reperfusion Injury/metabolism , Animals , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/pathology
3.
Front Neurol ; 10: 893, 2019.
Article in English | MEDLINE | ID: mdl-31481925

ABSTRACT

Histone deacetylase inhibitors (HDACi) are a promising therapeutic intervention for stroke. The involvement of the anti-inflammatory effects of HDACi in their neuroprotection has been reported, but the underlying mechanisms are still uncertain. Given the post-stroke inflammation is a time-dependent process, starting with acute and intense inflammation, and followed by a prolonged and mild one, we proposed whether target the early inflammatory response could achieve the neuroprotection of HDACi? To test this hypothesis, a single dose of suberoylanilide hydroxamic acid (SAHA) (50 mg/kg), a pan HDACi, was intraperitoneally (i.p.) injected immediately or 12 h after ischemia onset in a transient middle cerebral artery occlusion (tMCAO) mouse model. Compared with delayed injection, immediate SAHA treatment provided more protection, evidenced by smaller infarction volume, and a better outcome. This protection was accompanied by suppression of pro-inflammatory cytokines and reduction of activated microglia in the early stage of post-stroke inflammation. Moreover, SAHA treatment suppressed M1 cytokine expression (IL-6, TNF-α, and iNOS) while promoted the transcription of M2 cytokines (Arg-1 and IL-10) in LPS-challenged mouse microglia, and enhanced CD206 (M2 marker) but decreased CD86 (M1 markers) levels in microglia isolated from the ipsilateral hemisphere of MCAO mice. Collectively, our data suggested that the protection of SAHA on ischemic brain injury was closely associated with its inhibition on the early inflammatory response, and this inhibition was related to its reducing microglia activation and priming the activated microglia toward a more protective phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...