Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Biomark Insights ; 19: 11772719241258017, 2024.
Article in English | MEDLINE | ID: mdl-38863527

ABSTRACT

Background: Exploring the epigenetic regulations, such as microRNA, in newborns holds significant promise for enhancing our ability to address and potentially prevent early-life developmental delays. Objectives: Hence, this research seeks to investigate if the expression of miRNA in the umbilical cord blood of infants can forecast their developmental outcomes as they grow older. Design and method: We enrolled 143 full-term newborns, delivered either via cesarean section (CS) or through natural spontaneous delivery (NSD). We then analyzed the profiles of specific miRNAs (miR-486-5p, miR-126-5p, miR-140-3p, miR-151a-3p, miR-142-5p, and miR-30e-5p) in the umbilical cord blood of these infants. Subsequently, we performed follow-up assessments using Bayley-III scores when the cohort reached 1 year of age. Furthermore, we conducted pathway-enrichment analyses on the target genes associated with these examined miRNAs. Results: When comparing newborns delivered via cesarean section (CS) to those born via natural spontaneous delivery (NSD), we observed notable differences. Specifically, newborns through NSD displayed significantly higher ΔCt values for miR-486-5p, alongside lower ΔCt values for miR-126-5p and miR-151a-3p in their cord blood. At 1 year of age, cognitive development was significantly linked to the ΔCt values of miR-140-3p and miR-142-5p, while language development showed a significant association with the ΔCt values of miR-140-3p. Moreover, our pathway enrichment analyses revealed that the target genes of these miRNAs were consistently involved in the pathways related to neurons, such as axon guidance and the neurotrophin signaling pathway. Conclusion: In summary, this study represents a pioneering effort in elucidating the potential connections between miRNA levels in cord blood and the health indicators and neurodevelopment of newborns at 1 year of age. Our findings underscore the significance of miRNA levels at birth in influencing mechanisms related to neurodevelopment.

2.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
3.
Toxics ; 11(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38133369

ABSTRACT

POP data are limited in the marine environment; thus, this study aimed to investigate background persistent organic pollutant (POP) levels in oceanic deep-water-deposited particulates in the South China Sea (SCS). Six POPs, including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs), polychlorinated diphenyl ethers (PCDEs), and polybrominated biphenyls (PBBs), were investigated in eight pooled samples from the SCS from 20 September 2013 to 23 March 2014 and 15 April 2014 to 24 October 2014 at depths of 2000 m and 3500 m. PBDEs were the most predominant compounds, with the highest mean Σ14PBDE of 125 ± 114 ng/g dry weight (d.w.), followed by Σ17PCDD/F, Σ12PBDD/F, and Σ12DL-PCB (275 ± 1930, 253 ± 216, and 116 ± 166 pg/g d.w., respectively). Most PBDD/F, PBB, and PCDE congeners were below the detection limits. PCDDs had the highest toxic equivalency (TEQ), followed by PBDDs and DL-PCBs. Among the six POPs, PBDEs were the major components of the marine-deposited particles, regarding both concentrations and mass fluxes. Compared to 3500 m, PBDE levels were higher at a depth of 2000 m. PBDE mass fluxes were 20.9 and 14.2 ng/m2/day or 68.2 and 75.9 ng/m2/year at deep-water 2000 and 3500 m, respectively. This study first investigated POP levels in oceanic deep-water-deposited particles from existing global data.

4.
Toxics ; 11(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38133390

ABSTRACT

Titanium dioxide is a compound that is used in the food, cosmetic, and paint industries; however, it is still toxic to humans and the environment. This study determined the toxicities of titanium dioxide nanoparticles (TiO2 NPs) in a Caenorhabditis elegans (C. elegans) model. The effects of commercially available (C-TiO2) and synthetically (S-TiO2) prepared TiO2 NP solutions on lethality, lifespan, growth, reproduction, locomotion, and gene expression were studied in C. elegans. Exposure to TiO2 NPs (0.0, 0.01, 0.1, 1.0, and 10 mg/L) did not result in any change to the survival rate or body length of the nematodes, regardless of the concentration. However, there was a decrease in the reproduction (brood size) and locomotion (body bending and head thrashing) of the nematodes as the TiO2 NP concentration increased. The longevity of the nematodes was shortened following TiO2 NP exposure. The gene expression of sod-1, sod-3, ctl-1, ctl-2, cyp35A2, mlt-1, and mlt-2 in the nematodes showed that there was an overexpression of all genes when the worms were exposed to 1 mg/L C-TiO2 or 10 mg/L S-TiO2. It was therefore concluded that compared with S-TiO2, C-TiO2 possibly causes more toxicity or genotoxicity in the C. elegans model.

5.
Food Sci Nutr ; 11(6): 3339-3347, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324894

ABSTRACT

Studies suggest that the consumption of Tempeh can improve abnormal blood glucose and lipid parameters, although it remains still unclear as to whether Tempeh can improve tissue damage. In our study, db/db obese diabetic mice were given Tempeh 1 (300 mg/kg) and Tempeh 2 (600 mg/kg) for 3 months. The tissue samples collected were stained using different tissue-staining methodologies and were compared with the diabetic control group that was not given any Tempeh. Our results demonstrated that consuming high-dose Tempeh for 1 month could significantly reduce serum glucose and body weight in mice whereas the tissue section of our result could validate that consuming high-dose Tempeh for 3 months effectively improves lipid droplet size and lipid accumulation in the liver, aorta, and kidney of the mice. Moreover, an indication of the recovery of the damaged tissue could be observed in the heart and pancreatic tissue when high dosage of Tempeh was given as a treatment. Thus, it can be concluded that continuous consumption of Tempeh as a treatment could improve both blood glucose and body weight of diabetic mice while also improving lipid accumulation and tissue damage.

6.
Front Endocrinol (Lausanne) ; 14: 1173449, 2023.
Article in English | MEDLINE | ID: mdl-37334296

ABSTRACT

Background: Organophosphate flame retardants (OPFRs) are widely distributed in the environment and their metabolites are observed in urine, but little is known regarding OPFRs in a broad-spectrum young population from newborns to those aged 18 years. Objectives: Investigate urinary levels of OPFRs and OPFR metabolites in Taiwanese infants, young children, schoolchildren, and adolescents within the general population. Methods: Different age groups of subjects (n=136) were recruited from southern Taiwan to detect 10 OPFR metabolites in urine samples. Associations between urinary OPFRs and their corresponding metabolites and potential health status were also examined. Results: The mean level of urinary Σ10 OPFR in this broad-spectrum young population is 2.25 µg/L (standard deviation (SD) of 1.91 µg/L). Σ10 OPFR metabolites in urine are 3.25 ± 2.84, 3.06 ± 2.21, 1.75 ± 1.10, and 2.32 ± 2.29 µg/L in the age groups comprising of newborns, 1-5 year-olds, 6-10 year-olds, and 11-18 year-olds, respectively, and borderline significant differences were found in the different age groups (p=0.125). The OPFR metabolites of TCEP, BCEP, DPHP, TBEP, DBEP, and BDCPP predominate in urine and comprise more than 90% of the total. TBEP was highly correlated with DBEP in this population (r=0.845, p<0.001). The estimated daily intake (EDI) of Σ5OPFRs (TDCPP, TCEP, TBEP, TNBP, and TPHP) was 2,230, 461, 130, and 184 ng/kg bw/day for newborns, 1-5 yr children, 6-10 yr children, and 11-17 yr adolescents, respectively. The EDI of Σ5OPFRs for newborns was 4.83-17.2 times higher than the other age groups. Urinary OPFR metabolites are significantly correlated with birth length and chest circumference in newborns. Conclusion: To our knowledge, this is the first investigation of urinary OPFR metabolite levels in a broad-spectrum young population. There tended to be higher exposure rates in both newborns and pre-schoolers, though little is known about their exposure levels or factors leading to exposure in the young population. Further studies should clarify the exposure levels and factor relationships.


Subject(s)
Flame Retardants , Organophosphates , Child , Adolescent , Humans , Infant, Newborn , Child, Preschool , Organophosphates/metabolism , Taiwan/epidemiology , Health Status
7.
Article in English | MEDLINE | ID: mdl-36889241

ABSTRACT

Linoleic acid (LA, omega-6), an essential polyunsaturated fatty acid, is supplied by vegetable oils such as corn, sunflower and soybean. Supplementary LA in infants and children is required for normal growth and brain development, but has also been reported to induce brain inflammation and neurodegenerative diseases. This controversial role of LA development requires further investigation. Our study utilized Caenorhabditis elegans (C. elegans) as a model to clarify the role of LA in regulating neurobehavioral development. A mere supplementary quantity of LA in C. elegans larval stage affected the worm's locomotive ability, intracellular ROS accumulation and lifespan. We found that more serotonergic neurons were activated by supplementing LA above 10 µM thereby promoting locomotive ability with upregulation of serotonin-related genes. Supplementation with LA above 10 µM also inhibited the expression of mtl-1, mtl-2 and ctl-3 to accelerate oxidative stress and attenuate lifespan in nematodes; however, enhancement of stress-related genes such as sod-1, sod-3, mtl-1, mtl-2 and cyp-35A2 by supplementary LA under 1 µM decreased oxidative stress and increased the worm's lifespan. In conclusion, our study reveals that supplementary LA possesses both pros and cons in worm physiology and provides new suggestions for LA intake administration in childhood.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Oxidative Stress , Longevity/genetics , Reactive Oxygen Species/metabolism
8.
Environ Int ; 174: 107871, 2023 04.
Article in English | MEDLINE | ID: mdl-36931197

ABSTRACT

Contaminants of emerging concern such as organophosphate flame retardants (OPFRs) are associated with atmospheric fine particles (PM2.5), which pose the greatest health risk in the world. However, few surveys have explored the interaction between PM2.5 and OPFRs in residential paired indoor/outdoor environments. 11 priority OPFRs and PM2.5 were investigated across 178 paired indoor and outdoor air samples taken from 89 children's households in southern Taiwan, across cold and warm seasons. This involved exploring their associations with building characteristics, interior materials, and human activities. We developed a probabilistic predictive model for indoor OPFRs based on the indoor/outdoor (I/O) ratio of contaminants and an air quality index. The significant associations of paired indoor/outdoor OPFRs and PM2.5 were explored. The indoor level of OPFRs was greater than that of outdoor households, contrasting with PM2.5. The I/O OPFRs ratio was higher than 1 (except for TEHP, EHDPP, and TCP), which suggests that the sources of OPFRs were primarily emitted from indoors. Indoor TCEP was significantly positively associated with indoor and outdoor PM2.5. The OPFR level detected in apartments was higher than in houses due to the greater decoration, furniture and electronic devices. However, this was not the case for PM2.5. TCIPP was the dominant compound in paired indoor and outdoor air. The indoor OPFR predictive model obtained a high accuracy with an R2 value of 0.87. The material used in mattresses, the use of purifiers and heaters, and the total material area were the main influencing factors for indoor OPFRs in households. These findings could provide important evidence of the interaction between paired indoor/outdoor OPFRs and PM2.5 and interior equipment in different building types. In addition, it could prevent the potential risks posed by indoor/outdoor air pollutants and eliminate OPFR emissions through the selection of better construction and building materials.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Flame Retardants , Child , Humans , Organophosphates/analysis , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Particulate Matter , Environmental Monitoring
9.
Sci Total Environ ; 874: 162235, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36791866

ABSTRACT

The presence of chemical contaminants in foods and agricultural products is one of the major safety issues worldwide, posing a serious concern to human health. Nonthermal plasma (NTP) containing richly reactive oxygen and nitrogen species (RONS) has been trialed as a potential decontamination method. Yet, this technology comes with multiple downsides, including adverse effects on the quality of treated foods and limited exposure to entire surfaces on samples with hard-to-reach spots, further hindering real-life applications. Therefore, plasma-activated water (PAW) has been recently developed to facilitate the interactions between RONS and contaminant molecules in the liquid phase, allowing a whole surface treatment with efficient chemical degradation. Here, we review the recent advances in PAW utilized as a chemical decontamination agent in foods. The reaction mechanisms and the main RONS contributors involved in the PAW-assisted removal of chemical contaminants are briefly outlined. Also, the comprehensive effects of these treatments on food qualities (chemical and physical characteristics) and toxicological evaluation of PAW (in vitro and in vivo) are thoroughly discussed. Ultimately, we identified some current challenges and provided relevant suggestions, which can further promote PAW research for real-life applications in the future.


Subject(s)
Plasma Gases , Water , Humans , Water/chemistry , Decontamination/methods , Food Microbiology , Food , Reactive Oxygen Species , Plasma Gases/chemistry
10.
Life Sci ; 319: 121500, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796717

ABSTRACT

AIMS: To investigate human breast milk (HBM) lipids that may adversely affect infant neurodevelopment. MAIN METHODS: We performed multivariate analyses that combined lipidomics and psychologic Bayley-III scales to identify which HBM lipids are involved in regulating infant neurodevelopment. We observed a significant moderate negative correlation between 7,10,13,16-docosatetraenoic acid (omega-6, C22H36O2, the common name adrenic acid, AdA) and adaptive behavioral development. We further studied the effects of AdA on neurodevelopment by using Caenorhabditis elegans (C. elegans) as a model. Worms from larval stages L1 to L4 were supplemented with AdA at 5 nominal concentrations (0 µM [control], 0.1 µM, 1 µM, 10 µM, and 100 µM) and subjected to behavioral and mechanistic analyses. KEY FINDINGS: Supplementation with AdA from larval stages L1 to L4 impaired neurobehavioral development, such as locomotive behaviors, foraging ability, chemotaxis behavior, and aggregation behavior. Furthermore, AdA upregulated the production of intracellular reactive oxygen species. AdA-induced oxidative stress blocked serotonin synthesis and serotoninergic neuron activity and inhibited expression of daf-16 and the daf-16-regulated genes mtl-1, mtl-2, sod-1, and sod-3, resulting in attenuation of the lifespan in C. elegans. SIGNIFICANCE: Our study reveals that AdA is a harmful HBM lipid that may have adverse effects on infant adaptive behavioral development. We believe this information may be critical for AdA administration guidance in children's health care.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Child , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Oxidative Stress , Fatty Acids, Unsaturated/metabolism , Reactive Oxygen Species/metabolism , Longevity , Forkhead Transcription Factors/genetics
11.
Eur Child Adolesc Psychiatry ; 32(8): 1391-1401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35119524

ABSTRACT

Abnormal growth hormones and thyroid function may be linked to pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Phthalates and bisphenol-A (BPA), two endocrine-disrupting chemicals (EDCs), may affect the human endocrine system. In this study, we aimed to perform a comprehensive investigation of whether growth hormone, thyroid function, and EDCs exhibited differential levels between ADHD patients and healthy controls. In total, 144 children with ADHD and 70 healthy control subjects were enrolled. Their endocrine systems were evaluated using the serum levels of insulin-like growth factor-1 (IGF-1), IGF-binding protein-3 (IGFBP-3), thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and Free T4. The urinary levels of EDCs, including monoethyl phthalate (MEP), mono-methyl phthalate (MMP), monoethylhexyl phthalate (MEHP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), and BPA, were also examined. Patients with ADHD had lower IGF-1 levels than healthy controls (p = 0.003), but we observed no significant difference in IGFBP-3, TSH, T3, T4, or Free T4. Compared to the control group, patients with ADHD demonstrated higher MEHP levels (p = 0.043), MnBP (p = 0.033), and MBzP (p = 0.040). Furthermore, MEHP levels (p < 0.001) and BPA levels (p = 0.041) were negatively correlated with IGF-1 levels, while IGF-1 levels were negatively correlated with principal components consisting of ADHD clinical symptoms and neuropsychological performance variables. We suggest that MEHP exposure may be associated with decreased serum levels of IGF-1 and increased risk of ADHD. The mechanism underlying this association may be important for protecting children from environmental chemicals that adversely affect neurodevelopment.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Endocrine Disruptors , Child , Humans , Growth Hormone , Insulin-Like Growth Factor Binding Protein 3 , Environmental Exposure , Insulin-Like Growth Factor I , Attention Deficit Disorder with Hyperactivity/chemically induced , Endocrine Disruptors/adverse effects , Endocrine Disruptors/urine , Thyrotropin , Thyroid Hormones
12.
Biomedicines ; 10(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453611

ABSTRACT

Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.

13.
Article in English | MEDLINE | ID: mdl-35162443

ABSTRACT

The Severe Acute Respiratory Syndrome-associated Coronavirus 2 (SARS-CoV-2) was an outbreak in December, 2019 and rapidly spread to the world. All variants of SARS-CoV-2, including the globally and currently dominant Delta variant (Delta-SARS-CoV-2), caused severe disease and mortality. Among all variants, Delta-SARS-CoV-2 had the highest transmissibility, growth rate, and secondary attack rate than other variants except for the new variant of Omicron that still exists with many unknown effects. In Taiwan, the pandemic Delta-SARS-CoV-2 began in Pingtung from 14 June 2021 and ceased at 11 July 2021. Seventeen patients were infected by Delta-SARS-CoV-2 and 1 person died during the Pingtung outbreak. The Public Health Bureau of Pingtung County Government stopped the Delta-SARS-CoV-2 outbreak within 1 month through measures such as epidemic investigation, rapid gene sequencing, rapidly expanding isolation, expanded screening of the Delta-SARS-CoV-2 antigen for people who lived in regional villages, and indirect intervention, including rapid vaccination, short lockdown period, and travel restrictions. Indirect environmental factors, such as low levels of air pollution, tropic weather in the summer season, and rural areas might have accelerated the ability to control the Delta-SARS-CoV-2 spread. This successful experience might be recommended as a successful formula for the unvaccinated or insufficiently vaccinated regions.


Subject(s)
COVID-19 , Communicable Disease Control , Disease Outbreaks , Humans , SARS-CoV-2 , Taiwan/epidemiology
14.
Article in English | MEDLINE | ID: mdl-35162241

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs-COOH) in in vivo models, particularly Caenorhabditis elegans (C. elegans), and in vitro human cells is still unclear. In this study, C. elegans was used to study the effects of SWCNTs-COOH on lethality, lifespan, growth, reproduction, locomotion, reactive oxygen species (ROS) generation, and the antioxidant system. Our data show that exposure to ≥1 µg·L-1 SWCNTs-COOH could induce toxicity in nematodes that affects lifespan, growth, reproduction, and locomotion behavior. Moreover, the exposure of nematodes to SWCNTs-COOH induced ROS generation and the alteration of antioxidant gene expression. SWCNTs-COOH induced nanotoxic effects at low dose of 0.100 or 1.00 µg·L-1, particularly for the expression of antioxidants (SOD-3, CTL-2 and CYP-35A2). Similar nanotoxic effects were found in human cells. A low dose of SWCNTs-COOH induced ROS generation and increased the expression of catalase, MnSOD, CuZnSOD, and SOD-2 mRNA but decreased the expression of GPX-2 and GPX-3 mRNA in human monocytes. These findings reveal that background-level SWCNTs-COOH exerts obvious adverse effects, and C. elegans is a sensitive in vivo model that can be used for the biological evaluation of the toxicity of nanomaterials.


Subject(s)
Caenorhabditis elegans , Nanotubes, Carbon , Animals , Antioxidants , Carboxylic Acids , Humans , Nanotubes, Carbon/toxicity , Reactive Oxygen Species/metabolism
15.
Article in English | MEDLINE | ID: mdl-34770016

ABSTRACT

Breastfeeding is recommended over formula feeding, but human breast milk (HBM) composition varies and can be affected by food additives. Whether flame-retardant polybrominated diphenyl ethers (PBDEs) found in HBM interact with lipid components of HBM to impede infant neurodevelopment is a critical public health issue. Using lipidomic analysis, we examined the association of PBDEs in HBM and HBM lipid components with infant neurodevelopment. HBM samples (n = 100) were collected at the beginning stage of breastfeeding and analyzed for 30 PBDE congeners as well as a group of lipid components by using high-resolution gas chromatography, mass spectrometry, and liquid chromatography time-of-flight mass spectrometry. Infants were examined at 8 to 12 months of age by using the Bayley-III to assess neurodevelopment. A total of seven PBDEs, 35 lipids, and 27 fatty acids in HBM showed significant associations with Bayley-III scores. Multivariate analysis confirmed that these candidate PBDEs and lipid components were significant predictors of infant neurodevelopment. Eicosapentaenoic acid and docosapentaenoic acid in HBM showed no association with infant neurodevelopment in the general Taiwanese population. While certain PBDEs may play a role, our findings indicate that the lipid components of HBM are directly important for infant neurodevelopment.


Subject(s)
Environmental Pollutants , Halogenated Diphenyl Ethers , Environmental Pollutants/analysis , Female , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers/analysis , Humans , Infant , Lipids , Milk, Human/chemistry
16.
Toxics ; 9(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34678942

ABSTRACT

Due to the sparsity in knowledge, we investigated the presence of various estrogenic endocrine-disrupting chemicals (EEDCs), including phthalates (PAEs), bisphenol-A (BPA), and nonylphenol (NP), as well as microplastics (MPs) in samples of the most widely consumed fish collected from different estuaries in northern Taiwan. We then proceeded to determine the likely contribution that this exposure has on the potential for health impacts in humans following consumption of the fish. Six hundred fish caught from five river estuaries (producing 130 pooled samples) were analyzed to determine how different factors (such as the river, benthic, pelagic, and migratory species) influence EEDCs' contamination and the possible impacts on human health following typical consumption patterns. The predominant EEDCs was diethyl phthalates (DEP), bis (2-ethylhexyl) phthalates (DEHP), and di-iso-nonylphthalate (DINP) in fish, present at 52.9 ± 77.3, 45.3 ± 79.8, and 42.5 ± 79.3 ng/g dry weight (d.w.), respectively. Residual levels of NP, BPA, and MPs in the fish were 17.4 ± 29.1 and 1.50 ± 2.20 ng/g d.w. and 0.185 ± 0.338 mg/g d.w., respectively. EEDCs and MPs levels varied widely among the five river estuaries sampled due, in part, to differences in habitat types and the associated diversity of fish species sampled. For DEP, the Lao-Jie River and pelagic environments produced the most severely contaminated fish species, respectively. DEP residues were also associated with the burden of MPs in the fish. Based on our analysis, we predict no substantial direct human health risk by EEDCs based on typical consumption rates of estuarine fish by the Taiwanese people. However, other sources of EEDC exposure cannot be ignored.

17.
Data Brief ; 38: 107310, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34522729

ABSTRACT

Type II diabetes (T2D) arises through insulin resistance and a progressive decrease in insulin secretion, which may be partly related to pancreatic beta-cell function decline, obesity, and eventual hyperglycemia [1]. The first line for managing hyperglycemia in patients with T2D includes lifestyle modifications and metformin monotherapy. However, many patients still showed poor glycemic control due to progressive deterioration during the course of T2D [2, 3]. On streptozotocin-induced T2D rats, tempeh fermentation has been shown to be a potentially beneficial dietary supplement for abnormal carbohydrate metabolism [4]. This study was a prospective open-label clinical trial. The data were collected from Kaohsiung Veterans General Hospital Pingtung Branch, Taiwan from August 2018 to July 2019. 35 eligible T2D participants with a mean age of 57.91 ± 10.17 years were enrolled. After taking 2 g tempeh capsules daily for a period of 3 months, the levels of HbA1C and triglyceride were noticeably decreased in the participants. A regression analysis revealed that cholesterol concentration had a significant positive correlation with the concentrations of LDL, but triglyceride concentration had a significant negative correlation with the concentrations of HDL in the pre- and the post-tempeh treatment.

18.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445623

ABSTRACT

Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress. To further clarify the biological function of 9,12-octadecadiynoic acid in regulating neurodevelopment, Caenorhabditis elegans (C. elegans) was used as a model to investigate the effect of 9,12-octadecadiynoic acid on neurobehavioral development. Supplementation with 9,12-octadecadiynoic acid from the L1 to L4 stage in larvae affected locomotive behaviors and foraging ability that were not socially interactive, implying that 9,12-octadecadiynoic acid is involved in regulating the serotonergic neuronal ability. We found that supplementary 0.1 µM 9,12-octadecadiynoic acid accelerated the locomotive ability and foraging ability via increasing the expression of serotonin transporter mod-1. Antioxidant defense genes, sod-1, sod-3 and cyp-35A2 are involved in 9,12-octadecadiynoic acid-induced motor neuronal activity. Nevertheless, supplementary 9,12-octadecadiynoic acid at concentrations above 1 µM significantly attenuated locomotive behaviors, foraging ability, serotonin synthesis, serotonin-related gene expressions and stress-related gene expression, resulting in the decreased longevity of worms in the experiment. In conclusion, our study demonstrates the biological function of 9,12-octadecadiynoic acid in governing adaptive behavioral development.


Subject(s)
Behavior, Animal/drug effects , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental/drug effects , Larva/drug effects , Linoleic Acid/pharmacology , Nervous System/drug effects , Oxidative Stress/drug effects , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Larva/growth & development , Nervous System/growth & development
19.
Article in English | MEDLINE | ID: mdl-33625709

ABSTRACT

Bisphenol A (BPA) is a plasticizer used in the manufacture of polycarbonate and epoxy resins. It was found that higher urinary BPA levels are more likely to be associated with coronary artery disease (CVD). In recent years, the increasing incidence of CVD among young people is observed, which may be related with inflammation rather than the traditional triple-H risk factors. BPA is an endocrine-disrupting chemical, and can induce oxidative stress and chronic inflammation since its estrogenic effect. Inflammatory responses could come from the stimulation of IκB kinases (IKKs) by estrogen receptors (ERs). Therefore, this study investigated the association of BPA exposure with the gene expression of pro-inflammatory response (ERs and IKKs), an inflammation biomarker of CVD (C-reactive protein, CRP), and physiologic index potency of CVD development symptoms in young adults. This study divided BPA exposure levels into high and low groups based on the median plasma BPA level (4.34 ng/mL), and found that the high BPA group obviously had higher BMI, blood pressure, plasma CRP levels, and gene expression of ERß and IKKß. BMI and gene expression of IKKß were also positively correlated with plasma CRP secretion. Furthermore, the study subjects with potential CVD development symptoms had the increased levels of BPA (OR 2.10, 95% CI 0.83-5.39), CRP (OR 2.61, 95% CI 1.03-10.6) and IKKß (OR 4.29, 95% CI 1.51-15.6). These results indicated that exposure to BPA is potentially associated with expression of pro-inflammatory genes related to CRP secretion, which may promote the risk of CVD development symptoms in young adults. This study highlighted the possible connection between BPA exposure and CVD development but the mechanism between them needs to be further explored.

20.
Environ Monit Assess ; 192(7): 473, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32607767

ABSTRACT

Electrochemical advanced oxidation process (EAOP) is known for its efficient and fast degradation of organic pollutants in polluted water treatment. In this study, the EAOP using a boron-doped diamond (BDD) anode was applied to treat two-season groundwater samples collected from four sampling wells (GS1 to GS4) with petrochemical contaminants including methyl tert-butyl ether (MTBE), benzene, toluene, chlorobenzene, total organic compounds (TOC), and total petroleum hydrocarbons (TPH) at a gas station in southern Taiwan. Moreover, toxicity tests (ATP, p53, and NF-κB bioassays) were performed to evaluate the biological responses of raw and EAOP-treated groundwater. Results show that the concentrations of chlorobenzene before and after EAOP treatment were all below its method detection limit. High degradation efficiencies were observed for MTBE (100%), benzene (100%), toluene (100%, except that of GS2 in the first season), TPH (94-97%, except that of GS4 in the first season), and TOC (85-99%). Cell viability for both the raw groundwater (81.2 ± 13.5%) and EAOP-treated samples (84.7 ± 11.7%) as detected using the ATP bioassay showed no significant difference (p = 0.715). A mean reduction in the DNA damage (739 to 165 ng DOX-equivalency L-1 (ng DOX-EQ. L-1)) and inflammatory response levels (460 to 157 ng TNFα-equivalency L-1 (ng TNFα-EQ. L-1)) were observed for EAOP-treated samples subjected to p53 and NF-κB bioassays. Overall, the significances of the average degradation efficiency, DNA damage, and inflammatory response before and after groundwater with EAOP treatment was observed to be significant (p < 0.05). p53 and NF-κB bioassays might be applied to assess ecotoxic risk in the environment.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Oxidation-Reduction , Petroleum Pollution/analysis , Taiwan , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...