Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362799

ABSTRACT

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cell Differentiation/genetics , Cardiac Myosins/genetics
2.
J Mol Cell Cardiol ; 179: 60-71, 2023 06.
Article in English | MEDLINE | ID: mdl-37019277

ABSTRACT

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-ß fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Gene Editing , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathies/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cell Line , Mutation
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902340

ABSTRACT

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7E848G/+ HCM patients. Interestingly, MYH7E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis is associated with the MYH7E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Adult , Humans , Myocytes, Cardiac/metabolism , Tumor Suppressor Protein p53/metabolism , Cardiac Myosins/genetics , Mutation , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Myocardial Contraction/genetics , Apoptosis , Myosin Heavy Chains/metabolism
4.
bioRxiv ; 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36747685

ABSTRACT

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CR ISPR a On- T arget E diting R etrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNVs) in MYH7 , a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different MYH7 SNVs. We differentiated these hiPSCs to cardiomyocytes and show MYH7 fusion proteins can localize as expected. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of transgenic cell lines at unprecedented scale.

5.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747800

ABSTRACT

Missense mutations in myosin heavy chain 7 ( MYH7 ) are a common cause of hyper-trophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7 -based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adultonset systolic dysfunction. MYH7 E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7 E848G HCM patients. Interestingly, MYH7 E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7 E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis plays an important role in the MYH7 E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...