Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 28(3): 1386-1397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37610909

ABSTRACT

The heart sound reflects the movement status of the cardiovascular system and contains the early pathological information of cardiovascular diseases. Automatic heart sound diagnosis plays an essential role in the early detection of cardiovascular diseases. In this study, we aim to develop a novel end-to-end heart sound abnormality detection and classification method, which can be adapted to different heart sound diagnosis tasks. Specifically, we developed a Multi-feature Decision Fusion Network (MDFNet) composed of a Multi-dimensional Feature Extraction (MFE) module and a Multi-dimensional Decision Fusion (MDF) module. The MFE module extracted spatial features, multi-level temporal features and spatial-temporal fusion features to learn heart sound characteristics from multiple perspectives. Through deep supervision and decision fusion, the MDF module made the multi-dimensional features extracted by the MFE module more discriminative, and fused the decision results of multi-dimensional features to integrate complementary information. Furthermore, attention modules were embedded in the MDFNet to emphasize the fundamental heart sounds containing effective feature information. Finally, we proposed an efficient data augmentation method to circumvent the diagnosis performance degradation caused by the lack of cardiac cycle segmentation in other end-to-end methods. The developed method achieved an overall accuracy of 94.44% and a F1-score of 86.90% on the binary classification task and a F1-score of 99.30% on the five-classification task. Our method outperformed other state-of-the-art methods and had good clinical application prospects.


Subject(s)
Cardiovascular Diseases , Heart Sounds , Humans , Heart , Movement
2.
Comput Biol Med ; 168: 107830, 2024 01.
Article in English | MEDLINE | ID: mdl-38086140

ABSTRACT

Cone-beam computed tomography (CBCT) is generally reconstructed with hundreds of two-dimensional X-Ray projections through the FDK algorithm, and its excessive ionizing radiation of X-Ray may impair patients' health. Two common dose-reduction strategies are to either lower the intensity of X-Ray, i.e., low-intensity CBCT, or reduce the number of projections, i.e., sparse-view CBCT. Existing efforts improve the low-dose CBCT images only under a single dose-reduction strategy. In this paper, we argue that applying the two strategies simultaneously can reduce dose in a gentle manner and avoid the extreme degradation of the projection data in a single dose-reduction strategy, especially under ultra-low-dose situations. Therefore, we develop a Joint Denoising and Interpolating Network (JDINet) in projection domain to improve the CBCT quality with the hybrid low-intensity and sparse-view projections. Specifically, JDINet mainly includes two important components, i.e., denoising module and interpolating module, to respectively suppress the noise caused by the low-intensity strategy and interpolate the missing projections caused by the sparse-view strategy. Because FDK actually utilizes the projection information after ramp-filtering, we develop a filtered structural similarity constraint to help JDINet focus on the reconstruction-required information. Afterward, we employ a Postprocessing Network (PostNet) in the reconstruction domain to refine the CBCT images that are reconstructed with denoised and interpolated projections. In general, a complete CBCT reconstruction framework is built with JDINet, FDK, and PostNet. Experiments demonstrate that our framework decreases RMSE by approximately 8 %, 15 %, and 17 %, respectively, on the 1/8, 1/16, and 1/32 dose data, compared to the latest methods. In conclusion, our learning-based framework can be deeply imbedded into the CBCT systems to promote the development of CBCT. Source code is available at https://github.com/LianyingChao/FusionLowDoseCBCT.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Cone-Beam Computed Tomography/methods , Algorithms , X-Rays
3.
Sensors (Basel) ; 20(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992539

ABSTRACT

BACKGROUND: For the nonstationarity of neural recordings in intracortical brain-machine interfaces, daily retraining in a supervised manner is always required to maintain the performance of the decoder. This problem can be improved by using a reinforcement learning (RL) based self-recalibrating decoder. However, quickly exploring new knowledge while maintaining a good performance remains a challenge in RL-based decoders. METHODS: To solve this problem, we proposed an attention-gated RL-based algorithm combining transfer learning, mini-batch, and weight updating schemes to accelerate the weight updating and avoid over-fitting. The proposed algorithm was tested on intracortical neural data recorded from two monkeys to decode their reaching positions and grasping gestures. RESULTS: The decoding results showed that our proposed algorithm achieved an approximate 20% increase in classification accuracy compared to that obtained by the non-retrained classifier and even achieved better classification accuracy than the daily retraining classifier. Moreover, compared with a conventional RL method, our algorithm improved the accuracy by approximately 10% and the online weight updating speed by approximately 70 times. CONCLUSIONS: This paper proposed a self-recalibrating decoder which achieved a good and robust decoding performance with fast weight updating and might facilitate its application in wearable device and clinical practice.


Subject(s)
Brain-Computer Interfaces , Machine Learning , Algorithms , Animals , Hand/physiology , Haplorhini
SELECTION OF CITATIONS
SEARCH DETAIL
...