Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Membr ; 88: 189-203, 2021.
Article in English | MEDLINE | ID: mdl-34862026

ABSTRACT

The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.


Subject(s)
Cytoskeleton , Lipid Bilayers , Cell Membrane , Endocytosis , Membranes
2.
Stem Cell Res Ther ; 12(1): 243, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33858504

ABSTRACT

BACKGROUND: The regeneration response of the skin to mechanical stretching in vivo has been explored in reconstructive surgery to repair large-scale deformities. The ability of the skin to regenerate limits the reconstructive outcome. Here, we propose an approach in which autologous stromal vascular fraction (SVF) cells and mechanical stretching are combined to overcome this limitation and promote skin regeneration. METHODS: This randomized, blinded, placebo-controlled clinical trial screened 22 participants undergoing tissue expansion with exhausted regeneration. Twenty eligible participants received intradermal injections of the SVF or placebo treatments. Follow-ups were conducted at 4, 8, and 12 weeks to assess efficacy and at 2 years to assess safety. The primary endpoint was the expanded skin thickness at 12 weeks. The secondary endpoints included skin thickness at 4 and 8 weeks, the expansion index (EI), and the skin texture score at 12 weeks. RESULTS: The skin thickness of the SVF group was significantly higher than that of the control group at both 8 weeks (mean difference 0.78 [95% CI - 1.43 to - 0.11]; p = 0.018) and 12 weeks (0.65 [95% CI - 1.30 to - 0.01]; p = 0.046). In the SVF group, the increase in skin thickness was significant at 4 weeks (0.49 [95% CI - 0.80 to - 0.06]; p = 0.010) to 8 weeks (0.45 [95% CI - 0.92 to 0.02]; p = 0.026) and maintained after 12 weeks, whereas that in the control group was reduced after 8 weeks (0.42 [95% CI - 0.07 to 0.91]; p = 0.037). The SVF group showed greater EI increases than the control group (0.50 [95% CI - 0.00 to 0.99]; p = 0.047). The skin texture scores in the SVF group were greater than those in the control group at 12 weeks. Histologically, SVF-treated expanded skin showed more proliferating cells and blood vessels, and the extracellular matrix volume increased. No severe adverse events occurred. CONCLUSIONS: Transplantation of SVF cells can expedite the potency of mechanical stretch-induced skin regeneration and provide clinical reconstruction with plentiful tissue. TRIAL REGISTRATION: This trial was registered with the Chinese Clinical Trial Registry, ChiCTR2000039317 (registered 23 October 2020-retrospectively registered).


Subject(s)
Adipose Tissue , Stromal Cells , Humans , Skin , Transplantation, Autologous
3.
Curr Top Membr ; 81: 83-96, 2018.
Article in English | MEDLINE | ID: mdl-30243441

ABSTRACT

Cell volume regulation is commonly analyzed with a model of a closed semipermeable membrane filled with impermeant mobile solutes and the Donnan Equilibrium is used to predict the hydrostatic pressure. This traditional model ignores the fact that most cells are filled with a crosslinked cytoskeleton that is elastic and can be stretched or compressed like a sponge with no obvious need to move mobile solutes. However, calculations show that under osmotic stress, the elastic energy of the cytoskeleton is far greater than the elastic energy of the membrane. Here we expand the traditional Donnan model to include the elasticity of a cytoskeleton with fixed charges and show that cell stiffening happens without a membrane.


Subject(s)
Cytoskeleton/metabolism , Osmosis/physiology , Osmotic Pressure/physiology , Animals , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...