Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37879068

ABSTRACT

Although superhydrophobic surfaces have various promising applications, their fabrication methods are often limited to 2D plane surfaces that are vulnerable to abrasion and have limited adhesion to the substrate. Herein, an ultraviolet (UV) curable ink with bulk superhydrophobicity, consisting of poly(dimethylsiloxane) (PDMS) resins, hydrophobic silica, and solvent (porogen), was successfully developed for UV-assisted direct write printing processing. After UV curing of the ink followed by solvent evaporation, the generated porous structure cooperates with silica particles to form a self-similar and hierarchical structure throughout the bulk material, which can keep its original morphology even after cyclic abrasion (over 1000 times) and thus exhibits durable superhydrophobicity. With this unique ink, UV-assisted direct write printing can not only create 2D superhydrophobic surfaces on various substrates (e.g., paper and wire mesh) but also fabricate self-supporting 3D superhydrophobic objects for various applications such as waterproofing and oil-water separation. The printed objects exhibited a stable superhydrophobicity against liquid corrosion and mechanical damage. In addition, the 3D printing approach can be used to optimize the oil-water separation performance of the superhydrophobic porous materials by tuning the pore size, thus presenting promising applications.

2.
Small ; 19(47): e2303536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507816

ABSTRACT

Green fabrication of superhydrophobic surface by water-based processing is still challenging, because introduction of the substances with hydrophilic moieties compromises its superhydrophobicity. Herein, a plasmon-driven photochemical reduction reaction under ultraviolet light (UVA) irradiation is first discovered and is applied to deoxygenation of hydrophilic organic adsorbates on rough nano-Ag coating for the formation of stable superhydrophobic surface. A nano-Ag coating with strong localized surface plasmon resonance in the UVA region is prepared by a water-based silver mirror reaction and results in a unique chemical reduction reaction on its surface. Consequently, the low residual hydrophilic functionalities and the formed cross-linked structure of the adsorbate on Ag nanoparticles (NPs) enables the coating to exhibit stable superhydrophobicity against to both air and water. The superhydrophobic Ag NP-coated sandpaper can also be used as a surface-enhanced Raman scattering (SERS) substrate to concentrate aqueous analytes for trace detection.

3.
Article in English | MEDLINE | ID: mdl-35819402

ABSTRACT

Reducing lunar dust adhesion to various material surfaces is important for protecting equipment from damage during lunar exploration missions. In this study, we investigate the lunar dust-mitigation ability and dust adhesion force of aluminum (Al) substrates prepared using different etching methods. Among them, composite etching methods (combining chemical and electrochemical steps) can result in multiscale structures with micro- and nanoroughness, reducing the contact area between the substrate and thus decreasing lunar dust adhesion. After composite etching, the dust adhesion force of the Al substrate was significantly reduced by 80% from 45.53 to 8.89 nN. The dust adhesion force of Al substrates dominates their dust-mitigation performance in floating dust environments. The lunar dust coverage (2.19%) of the Al substrate modified by composite etching (placed with a tilt angle of 90°) was 4-fold lower than that of the pristine Al substrate (9.11%), indicating excellent lunar-dust repellence. In addition, other factors such as tilt angle of the substrate and dust loading significantly affect dust-mitigation performance of the modified Al substrates. The Al substrate with an excellent dust-mitigation ability highlights good potential for lunar exploration missions.

4.
Mikrochim Acta ; 187(9): 502, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32812088

ABSTRACT

A highly reproducible surface-enhanced Raman scattering (SERS) unsupported liquid-state platform (ULP) was developed for accurate quantitative determination of triazophos. Herein, citrate-reduced Ag NPs suspension was concentrated and placed in a stainless steel perforated template to form the SERS ULP. The relative standard deviation of the SERS measurements was less than 5% (n ≥ 10), and the R2 of the calibration curve was 0.994. The developed SERS ULP was applied for determination of triazophos in spiked agricultural products (rice, cabbage, and apple). Experiment results showed that the coefficient of variation ranged from 5.3 to 6.2% for intra-day and from 5.5 to 6.3% for inter-day (n = 3), which proved excellent SERS reproducibility. Moreover, the results were in good agreement with those from HPLC analysis. As a liquid-state SERS substrate, the highly reproducible ULP can perform precision quantitative analysis without surface modification of NPs, which is a significant improvement. This method provides a new perspective for quantitative SERS analysis of pesticide residues. Graphical abstract.


Subject(s)
Insecticides/analysis , Organothiophosphates/analysis , Spectrum Analysis, Raman/methods , Triazoles/analysis , Brassica/chemistry , Food Contamination/analysis , Limit of Detection , Malus/chemistry , Metal Nanoparticles/chemistry , Oryza/chemistry , Pesticide Residues/analysis , Reproducibility of Results , Silver/chemistry , Spectrum Analysis, Raman/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...