Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(15): 3263-3266, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38598422

ABSTRACT

The ability of α-amanitin to potently inhibit RNA polymerase II (RNAP II) has elicited further research into its use as a novel payload for antibody-drug conjugates. Despite this promise, the de novo synthesis of α-amanitin is still a major challenge as it possesses an unusual bicyclic octapeptide structure that contains several oxidized amino acids, most notably 4,5-dihydroxy-l-isoleucine. Here, we report a concise chemoenzymatic synthesis of this key amino acid residue, which features two regioselective and diastereoselective enzymatic C-H oxidations on l-isoleucine.


Subject(s)
Alpha-Amanitin , Amanitins , Alpha-Amanitin/chemistry , Amanitins/pharmacology , Isoleucine , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
2.
Article in English | MEDLINE | ID: mdl-38271597

ABSTRACT

Despite their prevalent use in drug discovery and protein biochemistry, non-canonical amino acids are still challenging to synthesize through purely chemical means. In recent years, biocatalysis has emerged as a transformative paradigm for small-molecule synthesis. One strategy to further empower biocatalysis is to use it in combination with modern chemical reactions and take advantage of the strengths of each method to enable access to challenging structural motifs that were previously unattainable using each method alone. In this Mini-Review, we highlight several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids. ONE-SENTENCE SUMMARY: This Mini-Review highlights several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.


Subject(s)
Amines , Amino Acids , Amino Acids/chemistry , Biocatalysis
3.
J Org Chem ; 82(1): 481-501, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27966957

ABSTRACT

Six-membered ring 3-enynamides underwent cycloisomerization in the presence of a catalytic amount of a gold(I) complex delivering mainly 4-azatricyclo[4.3.1.03,10]dec-2-ene derivatives and dibenz[cd,f]indole derivatives as the minor products under mild reaction conditions. Upon exposure to air, most aryl-substituted azatricycles led to bicyclic γ-lactams, while the ortho-tolyl- or alkyl-substituted azatricycles provided the corresponding bicyclic γ-lactams after oxidation with osmium tetraoxide and N-methylmorpholine-N-oxide. Under acidic conditions, the ortho-tolyl- or alkyl-substituted azatricycles were further transformed into 5-N-tosylaminomethyl-tethered bicyclo[4.2.0]octan-7-ones. The gold(I)-catalyzed tandem cycloisomerization/oxidation reaction also provided a new route for the synthesis of bridged bicyclic δ-lactams from six-membered ring 4-enynamides. The mild reaction conditions allowed the synthesis of a range of bicyclic γ- and δ-lactams and N-tosylaminomethyl-tethered bicyclo[4.2.0]octan-7-ones with high diastereoselectivities.

SELECTION OF CITATIONS
SEARCH DETAIL
...