Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38888895

ABSTRACT

Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.


Subject(s)
Dictyostelium , Pinocytosis , ras GTPase-Activating Proteins , Dictyostelium/cytology , Dictyostelium/metabolism , Protozoan Proteins/metabolism , ras GTPase-Activating Proteins/metabolism , ras Proteins/metabolism , Signal Transduction
2.
Dev Cell ; 59(5): 645-660.e8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38325371

ABSTRACT

Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.


Subject(s)
Dictyostelium , Animals , Dictyostelium/metabolism , Pinocytosis/physiology , Cytoplasm , Cell Nucleus , Transcription Factors/metabolism , Mammals
3.
Open Biol ; 14(1): 230372, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38263885

ABSTRACT

RasG is a major regulator of macropinocytosis in Dictyostelium discoideum. Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure. However, the loss of IqgC induces only a minor enhancement of fluid uptake in axenic cells that already lack another RasGAP, NF1. Here, we show that IqgC plays an important role in the regulation of macropinocytosis in the presence of NF1 by restricting the size of macropinosomes. We further provide evidence that interaction with RasG is indispensable for the recruitment of IqgC to forming macropinocytic cups. We also demonstrate that IqgC interacts with another small GTPase from the Ras superfamily, Rab5A, but is not a GAP for Rab5A. Since mammalian Rab5 plays a key role in early endosome maturation, we hypothesized that IqgC could be involved in macropinosome maturation via its interaction with Rab5A. Although an excessive amount of Rab5A reduces the RasGAP activity of IqgC in vitro and correlates with IqgC dissociation from endosomes in vivo, the physiological significance of the Rab5A-IqgC interaction remains elusive.


Subject(s)
Dictyostelium , Animals , Endosomes , Biological Transport , Mammals
4.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37010470

ABSTRACT

The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.


Subject(s)
Actins , Dictyostelium , Protozoan Proteins , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , Signal Transduction , Wiskott-Aldrich Syndrome Protein/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
5.
J Cell Biol ; 220(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33978708

ABSTRACT

Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.


Subject(s)
Actins/economics , Cell Polarity/genetics , Pinocytosis/genetics , Protozoan Proteins/genetics , Actins/genetics , Cell Movement/genetics , Chemotaxis/genetics , Cytoplasm/genetics , Dictyostelium/genetics , Pseudopodia/genetics , Signal Transduction/genetics
6.
Plant Cell Physiol ; 58(11): 2006-2016, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29036437

ABSTRACT

The germination and polar growth of pollen are prerequisite for double fertilization in plants. The actin cytoskeleton and its binding proteins play pivotal roles in pollen germination and pollen tube growth. Two homologs of the actin-bundling protein fimbrin, AtFIM4 and AtFIM5, are highly expressed in pollen in Arabidopsis and can form distinct actin architectures in vitro, but how they co-operatively regulate pollen germination and pollen tube growth in vivo is largely unknown. In this study, we explored their functions during pollen germination and polar growth. Histochemical analysis demonstrated that AtFIM4 was expressed only after pollen grain hydration and, in the early stage of pollen tube growth, the expression level of AtFIM4 was low, indicating that it functions mainly during polarized tube growth, whereas AtFIM5 had high expression levels in both pollen grains and pollen tubes. Atfim4/atfim5 double mutant plants had fertility defects including reduced silique length and seed number, which were caused by severe defects in pollen germination and pollen tube growth. When the atfim4/atfim5 double mutant was complemented with the AtFIM5 protein, the polar growth of pollen tubes was fully rescued; however, AtFIM4 could only partially restore these defects. Fluorescence labeling showed that loss of function of both AtFIM4 and AtFIM5 decreased the extent of actin filament bundling throughout pollen tubes. Collectively, our results revealed that AtFIM4 acts co-ordinately with AtFIM5 to organize and maintain normal actin architecture in pollen grains and pollen tubes to fulfill double fertilization in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Pollen Tube/growth & development , Actins/metabolism , Arabidopsis Proteins/genetics , Fertility , Gene Expression Regulation, Plant , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Mutation , Plants, Genetically Modified , Pollen Tube/physiology
7.
Plant Sci ; 253: 77-85, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27968999

ABSTRACT

In this paper we demonstrate the coupling of nuclear migration to the base of Arabidopsis root hairs with programmed cell death (PCD). Nuclear migration and positioning are fundamental processes of eukaryotic cells. To date, no evidence for a direct connection between nucleus migration and PCD has been described in the literature. Based on the findings of our previous study, we hereby further establish the regulatory role of caspase-3-like/DEVDase in root hair death and demonstrate nuclear migration to a position close to the root hair basement during PCD. In addition, continuous observation and statistical analysis have revealed that the nucleus disengages from the root hair tip and moves back to the root after the root hair grows to a certain length. Finally, pharmacological studies have shown that the meshwork of actin filaments surrounding the nucleus plays a pivotal role in nuclear movement during root hair PCD, and the basipetal movement of the nucleus is markedly inhibited by the caspase-3 inhibitor, Ac-DEVD-CHO.


Subject(s)
Arabidopsis/cytology , Cell Nucleus/physiology , Plant Roots/cytology , Actin Cytoskeleton/physiology , Arabidopsis/growth & development , Cell Death , In Situ Nick-End Labeling , Oligopeptides , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...