Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 57(12): 2264-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23901023

ABSTRACT

The receptor for advanced glycation of end products (RAGE) plays a critical role in the progression of type 2 diabetes (T2D). Soluble RAGE (sRAGE) is one of the RAGE variants, which acts as a decoy domain receptor and competes with RAGE, thus contributing to prevention of T2D. In this study, we conducted clinical trials of (-)-epigallocatechin-3-gallate (EGCG) rich green tea extract (300-900 mg/day) to investigate the effect of EGCG on relationship between S100A12 RAGE ligand and diverse sRAGE in T2D. Moreover, mechanism of sRAGE production also confirmed in vitro. Our data indicated that EGCG could stimulate sRAGE circulation but inhibited RAGE ligand in T2D, and ADAM10-mediated ectodomain shedding of extracellular RAGE was mainly involved in EGCG-stimulated sRAGE circulation. The present evidence indicates that EGCG has a potential to block S100A12-RAGE axis by stimulating sRAGE production through ADAM10-mediated ectodomain shedding of extracellular RAGE. Therefore, EGCG contributes to nutritional strategies for diabetes, not only because of its efficient antioxidant activity to scavenge free radicals, but also because of its ability stimulating sRAGE release in the circulation. Additionally, ADAM10-induced ectodomain shedding of extracellular RAGE leading to sRAGE circulation should be a potential of passive mechanism of sRAGE production to block S100A12-RAGE axis-related pathogenesis of proinflammation and diabetes.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Catechin/analogs & derivatives , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/metabolism , Membrane Proteins/metabolism , Plant Extracts/therapeutic use , Receptors, Immunologic/metabolism , S100 Proteins/metabolism , ADAM10 Protein , Camellia sinensis/chemistry , Catechin/pharmacology , Female , Humans , Male , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Protein Structure, Tertiary , Receptor for Advanced Glycation End Products , Receptors, Immunologic/blood , S100 Proteins/blood , S100A12 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...