Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760544

ABSTRACT

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

2.
Plant J ; 118(5): 1372-1387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38343032

ABSTRACT

Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.


Subject(s)
Genome, Plant , Genome, Plant/genetics , China , Adaptation, Physiological/genetics , Gene Flow , Genetics, Population , Genomics , Reproductive Isolation , Phylogeny , Genetic Variation , Climate , Genetic Speciation
3.
Immunology ; 171(4): 595-608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205925

ABSTRACT

Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.


Subject(s)
Asthma , Gastrointestinal Microbiome , Mycobacteriaceae , Mycobacterium , Mice , Animals , Inflammation , Mice, Inbred BALB C , Ovalbumin , Disease Models, Animal , Lung , Bronchoalveolar Lavage Fluid
4.
J Asthma ; : 1-18, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294718

ABSTRACT

OBJECTIVE: At present, targeting molecular-pharmacological therapy is still difficult in neutrophilic asthma. The investigation aims to identify and validate mitochondrion-related gene signatures for diagnosis and specific targeting therapeutics in neutrophilic asthma. METHODS: Bronchial biopsy samples of neutrophilic asthma and healthy people were identified from the GSE143303 dataset and then matched with human mitochondrial gene data to obtain mitochondria-related differential genes (MitoDEGs). Signature mitochondria-related diagnostic markers were jointly screened by support vector machine (SVM) analysis, least absolute shrinkage, and selection operator (LASSO) regression. The expression of marker MitoDEGs was evaluated by validation datasets GSE147878 and GSE43696. The diagnostic value was evaluated by receiver operating characteristic (ROC) curve analysis. Meanwhile, the infiltrating immune cells were analyzed by the CIBERSORT. Finally, oxidative stress level and mitochondrial functional morphology for asthmatic mice and BEAS-2B cells were evaluated. The expression of signature MitoDEGs was verified by qPCR. RESULTS: 67 MitoDEGs were identified. Five signature MitoDEGs (SOD2, MTHFD2, PPTC7, NME6, and SLC25A18) were further screened out. The area under the curve (AUC) of signature MitoDEGs presented a good diagnostic performance (more than 0.9). There were significant differences in the expression of signature MitoDEGs between neutrophilic asthma and non-neutrophilic asthma. In addition, the basic features of mitochondrial dysfunction were demonstrated by in vitro and in vivo experiments. The expression of signature MitoDEGs in the neutrophilic asthma mice presented a significant difference from the control group. CONCLUSIONS: These MitoDEGs signatures in neutrophilic asthma may hold potential as anchor diagnostic and therapeutic targets in neutrophilic asthma.

5.
Environ Res ; 236(Pt 2): 116819, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37541418

ABSTRACT

In this study, a series of biochar were prepared via pyrolyzing cellulose-rich pakchoi (PBC) and lignin-rich corncob (CBC) to explore the photoreduction process of Cr(VI). X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirmed higher oxygenated functional groups in PBC (48.9%-57.1%), whereas CBC exhibited more aromatization properties due to the stable aromatic network in lignin. For PBC, the valence bands decreased from 1.42 eV to 1.20 eV with the increase of pyrolysis temperature from 300 °C to 500 °C; however, an opposite trend was observed for CBC. The photoreduction of Cr(VI) clearly showed that both PBC and CBC had the best performance at the carbonization temperature of 300 °C (named PBC300 and CBC300). It is noted that PBC300 exhibited the most effective photoreduction of Cr(VI), which was about 1.3 times higher than that of CBC300. The maximum reduction capacities of Cr(VI) were 68.2 mg g-1 on PBC300 and 66.1 mg g-1 on CBC300 at pH∼2.0. Compared with the insoluble char substances, dissolved black carbons made more contributions for Cr(VI) photoreduction, ∼70% in PBC and almost 100% in CBC, which suggested that in the case of PBC, the insoluble char and the corresponding dissolved black carbons play an important role in the photoreduction of Cr(VI). However, only dissolved black carbons contributed to Cr(VI) photoreduction on CBC. As the key reaction pathway, the interfacial electron transport dominated Cr(VI) reduction on PBC and CBC. Moreover, the radical of •O2- had some contribution to the reduction of Cr(VI) only in the PBC system. Interestingly, •OH could promote the photoreduction of Cr(VI) in both PBC and CBC systems, which might be due to the fact that •OH facilitated the formation of small molecule fragments. These findings provide an essential basis for evaluating the environmental impact of photocatalytic behaviors of biochar.


Subject(s)
Lignin , Water Pollutants, Chemical , Cellulose , Charcoal/chemistry , Chromium/analysis , Adsorption , Water Pollutants, Chemical/analysis
6.
Int J Cancer ; 153(11): 1877-1884, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37163613

ABSTRACT

Patients with metastatic colorectal cancer (mCRC) have poor long-term survival. Rechallenge with anti-epidermal growth factor receptor (anti-EGFR) based therapy has shown certain activity as late-line therapy. To further improve clinical outcomes, we evaluated the antitumor efficacy and safety of cetuximab in combination with camrelizumab and liposomal irinotecan in patients with RASwt mCRC pretreated with anti-EGFR-based therapy. Patients with RASwt mCRC who had received at least two prior systemic therapies, including anti-EGFR-based treatment in the metastatic or unresectable disease setting, were enrolled in cohort B. Patients were treated with cetuximab (500 mg/m2 ) and camrelizumab (200 mg) plus liposomal irinotecan (HR070803, 60 mg/m2 ) intravenously once every 2 weeks. The primary endpoint was the objective response rate (ORR) by RECIST v1.1. The secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety. At the data cutoff (23 November 2022), 19 patients were enrolled in the two stages, and 16 were evaluable for efficacy analyses. The ORR was 25% (95% confidence interval [CI]: 10.2%-49.5%), and DCR was 75% (95% CI: 50.5%-89.8%). The median PFS and OS were 6.9 (95% CI: 2.6-11.2) and 15.1 (95% CI: 6.1-24.0) months, respectively. Grade 3 treatment-related adverse events (TRAEs) occurred in 15.8% (3/19) of patients. No grade ≥4 TRAEs were found in the safety population. Our study suggests that anti-EGFR retreatment therapy with cetuximab plus camrelizumab and liposomal irinotecan (HR070803) is a promising late-line treatment option with good antitumor activity and well-tolerated toxicity in RASwt mCRC patients.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Gastrointestinal Neoplasms , Rectal Neoplasms , Humans , Cetuximab/adverse effects , Irinotecan , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Gastrointestinal Neoplasms/drug therapy , Retreatment , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Proto-Oncogene Proteins p21(ras)/genetics , Camptothecin
7.
Sheng Li Xue Bao ; 74(5): 763-772, 2022 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-36319099

ABSTRACT

The present study was aimed to investigate the effects of circRNA-0028171 on the apoptosis of vascular endothelial cells induced by arsenic trioxide (As2O3). Human umbilical vein endothelial cells (HUVECs) were treated with 0-15 µmol/L As2O3 for 24 h. Then, cellular viability was measured by MTT assay. The expression levels of circRNA-0028171, Bcl-2 and Bax mRNA were detected by real-time quantitative PCR. Bcl-2/Bax protein ratio was detected by Western blot. Whether circRNA-0028171 was involved in the regulation of HUVECs by As2O3 was investigated by transfection with overexpression plasmid of circRNA-0028171 and siRNA. The results showed that compared with the control group, As2O3 group showed decreased cellular viability, reduced Bcl-2/Bax mRNA and protein ratios, and significantly lower expression of circRNA-0028171. Overexpression of circRNA-0028171 inhibited apoptosis of HUVECs induced by As2O3. Knockdown of circRNA-0028171 by siRNA promoted As2O3-induced apoptosis in HUVECs. These results suggest that circRNA-0028171 is involved in the vascular endothelial cell apoptosis induced by As2O3.


Subject(s)
Apoptosis , RNA, Circular , Humans , Arsenic Trioxide/metabolism , Arsenic Trioxide/pharmacology , bcl-2-Associated X Protein/metabolism , RNA, Small Interfering/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Messenger/metabolism
8.
Diabetes Metab Res Rev ; 38(8): e3577, 2022 11.
Article in English | MEDLINE | ID: mdl-36152017

ABSTRACT

AIMS: We propose a simple type 2 diabetes mellitus (T2DM) classification method based on fasting C-peptide (FCP) levels and examined its feasibility and validity. METHODS: Adult T2DM patients first diagnosed in our tertiary care centre from January 2009 to January 2020 were included. Patients were followed until January 2021; their clinical characteristics, chronic complications, treatment regimen, and glycaemic control were compared. RESULTS: In total, 5644 T2DM patients were included. Three subgroups were established based on FCP levels: subtype T1 (FCP ≤ 1.0 µg/L), 1423 patients (25.21%); subtype T2 (FCP 1.0-2.5 µg/L), 2914 patients (51.63%); and subtype T3 (FCP ≥ 2.5 µg/L), 1307 patients (23.16%). T1 was characterised by older age, lower body mass indices, higher initial glycosylated haemoglobin (HbA1c) levels, and the lowest homoeostatic model assessment 2 estimates of ß-cell function (HOMA2-ß) and HOMA2-insulin resistance at baseline. The T3 group's clinical characteristics were opposite to those of T1. T3 patients showed higher incidence rates and risks of diabetic kidney disease, diabetic peripheral vascular disease, and non-alcoholic fatty liver, while the risks of diabetic retinopathy and diabetic peripheral neuropathy were highest in T1. Insulin, glycosidase inhibitors, and thiazolidinedione were the most frequently used drugs, but the use of metformin, dipeptidyl peptidase-4 inhibitor, and insulin secretagogue drugs was slightly lower in T1. T1 maintained higher HbA1c levels throughout follow-up. Overall HbA1c fluctuations were more significant in T3 than in T1 and T2. CONCLUSIONS: The new adult T2DM classification is simple and clear and will help classify different T2DM clinical characteristics and guide treatment plans.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Humans , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Blood Glucose , Retrospective Studies , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , China/epidemiology
9.
Exp Lung Res ; 48(7-8): 239-250, 2022.
Article in English | MEDLINE | ID: mdl-36001552

ABSTRACT

Background: Airway remodeling is accepted to be a determining component within the natural history of asthma. Nebulized inhalation of Mycobacterium vaccae (M. vaccae) has a protective effect on asthmatic mice. However, little is known regarding the effect of M. vaccae on airway structural remodeling in asthmatic mice. The purpose of this study was to explore the effect and the underlying mechanism of M. vaccae aerosol inhalation on airway structural remodeling in an asthma mouse model. Methods: Chronic asthma mouse models were established by ovalbumin induction. The number of inflammatory cells in bronchoalveolar lavage fluid (BALF), pathological alterations in lung tissue, and levels of associated cytokines (IL-5, IL-13, TNF-α, and ovalbumin-specific immunoglobulin E [OVA-sIgE]) were all assessed after M. vaccae therapy. The relative expression of interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), and Wnt1-induced signaling protein 1 (WISP1) mRNA were detected. Western blotting and immunohistochemistry detected the expression of Wnt/ß-catenin pathway-related proteins in lung tissue. Results: M. vaccae aerosol inhalation relieved airway inflammation, airway hyper-responsiveness, and airway remodeling. M. vaccae reduced the levels of IL-5, IL-13, TNF-α, and OVA-sIgE in and downregulated the expression of IL-1ß, TNF-α, NF-κB, and WISP1 mRNA in the pulmonary. In addition, M. vaccae inhibited the expression of ß-catenin, WISP1, and Wnt1 protein and upregulated the expression of glycogen synthase kinase-3beta (GSK-3ß). Conclusion: Nebulized inhalation of M. vaccae can reduce airway remodeling during asthma.


Subject(s)
Airway Remodeling , Asthma , Animals , Asthma/metabolism , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Interleukin-13 , Interleukin-5 , Lung/metabolism , Mice , Mice, Inbred BALB C , Mycobacteriaceae , NF-kappa B , Ovalbumin , RNA, Messenger , Respiratory Aerosols and Droplets , Tumor Necrosis Factor-alpha , beta Catenin
10.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35453372

ABSTRACT

Previous studies suggest that the inclusion of melatonin (MTn) in in vitro maturation protocols improves the developmental competence of oocytes by scavenging reactive oxygen species (ROS). However, the molecular mechanisms integrating melatonin receptor (MT)-mediated lipid metabolism and redox signaling during in vitro cumulus-oocyte complex (COC) development still remain unclear. Here, we aimed to elucidate the potential role of MTn receptors in lipid metabolic adjustments during in vitro porcine COC development. We observed that MTn-mediated Gsα-cAMP/PKA signaling facilitated lipolysis primarily through the MT2 receptor and subsequently increased fatty acid (FA) release by hydrolyzing intracellular triglycerides (TGs) in cumulus cells. Furthermore, CD36 was a critical FA transporter that transported available FAs from cumulus cells to oocytes and promoted de novo TG synthesis in the latter. In addition, MTn regulated lipogenesis and intracellular lipolysis to maintain lipid homeostasis and limit ROS production, thereby supporting oocyte cytoplasmic maturation and the subsequent embryo development. Taken together, these findings provide insight into the possible mechanism integrating MT2-mediated lipid homeostasis and redox signaling, which limits ROS production during in vitro COC development. Therefore, understanding the dynamics of the interactions between lipid homeostasis and redox signaling driven by MT2 is necessary in order to predict drug targets and the effects of therapeutics used to improve female reproductive health.

11.
J Inflamm Res ; 15: 423-437, 2022.
Article in English | MEDLINE | ID: mdl-35082511

ABSTRACT

PURPOSE: The Hippo signaling pathway participates in the restriction of cell proliferation and organ growth. Activated macrophages have been implicated in the pathogenesis of allergic asthma. Recent studies have shown that Hippo signaling pathway may also be involved in the regulation of asthma. However, the link between Hippo signaling pathway and macrophages in the context of allergic asthma has not been investigated. The purpose of this study was to explore the link between Hippo signaling pathway and macrophages using a mice model of OVA-induced allergic asthma. METHODS: Mice models of asthma were established. Lung tissues were collected from mice and pooled for mRNA sequencing and bioinformatics analysis. The relative mRNA expression of Hippo signalling pathway-related proteins Yap1, Lef1 and Ctgf was also measured. Double immunofluorescence staining was performed on lung tissues to evaluate macrophage marker F4/80 expression and Yap1/Lef1/Ctgf expression. RESULTS: Results of the RNA-Seq of lung tissues demonstrated that the Hippo signaling pathway was down-regulated in OVA-induced allergic asthma. Using the cytoHubba tool kits in Cytoscape, the following top 10 hub genes of Hippo signalling pathway were identified: Yap1, Lef1, Ctgf, Ccnd1, Axin2, Smad7, Wnt4, Wnt3a, Pard6b, and Wwc1. Using the seq-ImmuCC (http://218.4.234.74:3200/immune/), a negative correlation was found between macrophages and Hippo signaling pathway activity (R2 = 0.93). The mRNA expression levels of pulmonary Yap1, Lef1, and Ctgf were down-regulated in the mice model of OVA-induced allergic asthma. Moreover, double-stained immunofluorescence for F4/80 and Yap1, Lef1, Ctgf in mouse lung sections respectively revealed that macrophage proliferation was correlated with downregulation of the Hippo signaling pathway in the mice model of OVA-induced allergic asthma. CONCLUSION: These results demonstrated that the Hippo signaling pathway was down-regulated in asthma mice, and the proliferation of macrophages was associated with downregulation of the Hippo signaling pathway. These findings reveal novel insights into the pathogenesis and treatment of asthma.

12.
Acta Pharmacol Sin ; 43(6): 1383-1394, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34493812

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury is a pathological process characterized by cardiomyocyte apoptosis, which leads to cardiac dysfunction. Increasing evidence shows that abnormal expression of long noncoding RNAs (lncRNAs) plays a crucial role in cardiovascular diseases. In this study we investigated the role of lncRNAs in myocardial I/R injury. Myocardial I/R injury was induced in mice by ligating left anterior descending coronary artery for 45 min followed by reperfusion for 24 h. We showed that lncRNA KnowTID_00006395, termed lncRNA-6395 was significantly upregulated in the infarct area of mouse hearts following I/R injury as well as in H2O2-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Overexpression of lncRNA-6395 led to cell apoptosis and the expression change of apoptosis-related proteins in NMVCs, whereas knockdown of lncRNA-6395 attenuated H2O2-induced cell apoptosis. LncRNA-6395 knockout mice (lncRNA-6395+/-) displayed improved cardiac function, decreased plasma LDH activity and infarct size following I/R injury. We demonstrated that lncRNA-6395 directly bound to p53, and increased the abundance of p53 protein through inhibiting ubiquitination-mediated p53 degradation and thereby facilitated p53 translocation to the nucleus. More importantly, overexpression of p53 canceled the inhibitory effects of lncRNA-6395 knockdown on cardiomyocyte apoptosis, whereas knockdown of p53 counteracted the apoptotic effects of lncRNA-6395 in cardiomyocytes. Taken together, lncRNA-6395 as an endogenous pro-apoptotic factor, regulates cardiomyocyte apoptosis and myocardial I/R injury by inhibiting degradation and promoting sub-cellular translocation of p53.


Subject(s)
Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Hydrogen Peroxide/pharmacology , Infarction/pathology , Mice , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Chinese Pharmacological Bulletin ; (12): 1498-1504, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014230

ABSTRACT

Aim To investigate the effect of circRNA- 32011 on myocardial apoptosis induced by arsenic triox- ide (ATO).Methods Primary cardioniyocytes of suckling neonate mouse were treated with ATO ( final concentration 10 (xniol • L_1 ) for 24 h.Then cell via¬bility was measured by M IT assay.The mKNA expres¬sion levels of Bel-2/ Bax and circRNA-3201 I were de¬tected by KT-PCK.Bcl-2/Bax protein expression lev¬els were detected by Western blot.Overexpression and knock down circHNA-32011 respectively by plasmid and siHNA were used to verify its function in ATO-in- duced cardiomyocyte apoptosis.Results Myocardial cell viability decreased, Bel-2 expression significantly decreased while Bax expression increased in ATO group compared with the control group.CircKNA- 32011 was down-regulated in ATO ineuhated cardio¬niyocytes.Ovcrex press ion of circRNA-32011 in ATO- incubated cardioniyocytes increased myocardial cell vi¬ability and Bel-2 expression and decreased the expres¬sion of Bax.Knockdown of circRNA-32011 could fur¬ther reduce cardiomyoevte activity and Bel-2 expression and increase the experssion of Bax induced by ATO.Conclusions CircRNA-32011 protects cardiac myo¬cytes from apoptosis induced by arsenic trioxide, which may provide a new potential therapeutic strategy for ATO-induced myocardial injury.

14.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34679729

ABSTRACT

To investigate the effects of tannins (TA) on porcine oocyte in vitro maturation (IVM), different concentrations of TA (0, 1, 10 and 100 µg/mL) were supplemented with a maturation medium and the COCs and subsequent embryonic development were examined. The results showed that 10 µg/mL TA significantly improved the cumulus expansion index (CEI), cumulus-expansion-related genes (PTGS1, PTGS2, PTX-3, TNFAIP6 and HAS2) expression and blastocyst formation rates after parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) compared to the control groups, but not oocyte nuclear maturation. Nevertheless, 10 µg/mL TA dramatically enhanced the mRNA expression of oocyte-development-related genes (BMP15, GDF9, CDC2 and CYCLIN B1), GSH, ATP, SOD1, PGC1α, BMP15, GDF9 and CDC2 levels and reduced intracellular ROS level in porcine oocytes. These results indicated that porcine oocyte cytoplasmic maturation was improved by 10 µg/mL TA treatment during IVM. In contrast, a high concentration of TA (100 µg/mL) significantly decreased the CEI and PTGS1, PTGS2, PTX-3 and HAS2 mRNA expressions in cumulus cells, and reduced oocyte nuclear maturation and the total cell numbers/blastocyst. In general, these data showed that 10 µg/mL TA supplementation has beneficial effects on oocyte cytoplasmic maturation and subsequent embryonic development in pigs.

15.
J Aerosol Med Pulm Drug Deliv ; 34(6): 374-382, 2021 12.
Article in English | MEDLINE | ID: mdl-33945334

ABSTRACT

Background:Mycobacterium vaccae vaccine, a composition of Mycobacterium proteins, has been known to have bidirectional immunomodulatory functions. Recent studies have shown that M. vaccae has a therapeutic potential for treating asthma. However, little is known regarding the effect of M. vaccae aerosol inhalation during allergen sensitization or challenge on asthma. The purpose of this study was to explore the effect and the underlying mechanism of M. vaccae aerosol inhalation during allergen sensitization or challenge on airway inflammation in an asthma mouse model. Methods: Asthma mouse models were established. Mice received aerosol inhalation with M. vaccae once daily during allergen sensitization or challenge for 5 days successively. Airway responsiveness, bronchoalveolar lavage fluid (BALF) cell count, histology, and cytokine concentrations (IL-4, IFN-γ, IL-10, and IL-17) were measured. The relative mRNA expression of ASC, caspase-1, TNF-α, and IL-1ß was also determined. Expression of pulmonary NLRP3 and nuclear factor kappa B (NF-κB) protein was measured using immunohistochemistry and Western blot. Results:M. vaccae aerosol inhalation suppressed airway hyperresponsiveness and inflammation, reduced levels of IL-4, upregulated expression of IFN-γ and IL-10 in BALF, inhibited mRNA expression of pulmonary ASC, caspase-1, TNF-α, and IL-1ß, and also inhibited expression of pulmonary NLRP3 and NF-κB protein during allergen sensitization or challenge. Conclusion:M. vaccae aerosol inhalation can suppress airway hyperresponsiveness and inflammation during allergen sensitization or challenge, and may be a promising approach for asthma therapy.


Subject(s)
Asthma , Administration, Inhalation , Aerosols/therapeutic use , Animals , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Inflammation , Lung , Mice , Mice, Inbred BALB C , Mycobacteriaceae , Ovalbumin
16.
J Aerosol Med Pulm Drug Deliv ; 34(2): 108-114, 2021 04.
Article in English | MEDLINE | ID: mdl-33691499

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 infection is associated with strong infectiousness and has no effective therapy. We aimed to explore the efficacy and safety of Mycobacterium vaccae nebulization in the treatment of Coronavirus Disease 2019 (COVID-19). Methods: In this randomized, double-blind, placebo-controlled clinical trial, we included 31 adult patients with moderate COVID-19 who were admitted to the Fourth People's Hospital of Nanning (Nanning, China) between January 22, 2020 and February 17, 2020. Patients were randomly divided into two groups: group A (standard care group) and group B (M. vaccae in combination with standard care group). The primary outcome was the time interval from admission to viral RNA negative conversion (oropharyngeal swabs were used in this study). Secondary outcomes included chest computed tomography (CT), mortality, length of hospital stay, complications during treatment, and so on. Patients were followed up to 4 weeks after discharge (reexamination of viral RNA, chest CT, etc.). Results: Nucleic acid test negative conversion time in group B was shorter than that in group A (2.9 days [2.7-8.7] vs. 6.8 days [3.3-13.8]; p = 0.045). No death and no conversion to severe or critical cases were observed in both groups. Two weeks after discharge, neither "relapse" nor "return to positive" cases were found. Four weeks after discharge, it was found that there was no case of " relapse " or "return to positive" in group B, and 1 patient in group A showed "return to positive", but there was no clinical manifestation and imaging progression. No adverse reactions related to M. vaccae were found during observation period. Conclusion:M. vaccae treatment might shorten the time interval from admission to viral RNA negative conversion, which might be beneficial to the prevention and treatment of COVID-19. Clinical Trial Registration: ChiCTR2000030016.


Subject(s)
COVID-19/therapy , Length of Stay , Mycobacteriaceae/immunology , Tomography, X-Ray Computed , Administration, Inhalation , Adolescent , Adult , Aged , COVID-19/immunology , COVID-19/mortality , Double-Blind Method , Female , Humans , Male , Middle Aged , Time Factors , Treatment Outcome , Young Adult
17.
J Asthma ; 58(8): 1003-1012, 2021 08.
Article in English | MEDLINE | ID: mdl-32329381

ABSTRACT

OBJECTIVES: Bronchial asthma can be effectively controlled but not be cured, its etiology and pathogenesis are still unclear, and there are no effective preventive measures. The key characteristic of asthma is chronic airway inflammation, and recent research has found that airway neurogenic inflammation plays an important role in asthma. We previously found that Mycobacterium vaccae nebulization protects against asthma. Therefore, this objective of this study is to explore the effect of M. vaccae nebulization on asthmatic neural mechanisms. METHODS: A total 18 of female Balb/c mice were randomized into normal, asthma control, and M. vaccae nebulization (Neb.group) groups, and mice in the Neb.group were nebulized with M. vaccae one month before the asthmatic model was established. Then, 1 month later, the mice were sensitized and challenged with ovalbumin. Twenty-four hours after the last challenge, mouse airway responsiveness; pulmonary brain-derived neurotropic factor (BDNF), neurofilament-medium length (NF-M, using NF09 antibody), and acetylcholine expression; and nerve growth factor (NGF) mRNA level were determined. RESULTS: We found that the BDNF, NF09, acetylcholine expression, and NGF mRNA level were decreased in the Neb.group compared with levels in the asthma control group. CONCLUSION: M. vaccae nebulization may protected in Balb/c mice against bronchial asthma through neural mechanisms.


Subject(s)
Asthma/prevention & control , Mycobacteriaceae , Acetylcholine/analysis , Animals , Asthma/metabolism , Asthma/pathology , Brain-Derived Neurotrophic Factor/analysis , Female , Lung/pathology , Mice , Mice, Inbred BALB C , Nerve Growth Factor/analysis , Nerve Growth Factor/genetics
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906148

ABSTRACT

Objective:To explore the application value of modified Buzhong Yiqitang (BZYQT) in the treatment of postoperative patients with non-small cell lung cancer (Qi deficiency in lung and spleen) after chemotherapy, and to observe its effect on tumor angiogenesis, immune function, tumor indicators, and lung function indicators. Method:Ninety-six patients who were treated in the Kunming municipal hospital of traditional Chinese medicine from March 2018 to February 2020 due to postoperative chemotherapy for non-small cell lung cancer were selected and assigned into a control group (<italic>n</italic>=48, western medicine) and an observation group (<italic>n</italic>=48, western medicine+modified BZYQT) by the random number table. The curative efficacies were compared after the treatment. Result:After treatment, the serum levels of carcinoembryonic antigen (CEA), cytokeratin 19 fragment 21-1 (CYFRA21-1), serum insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and transforming growth factor(TGF)-<italic>β</italic><sub>1</sub> in the observation group were lower than those in the control group (<italic>P</italic><0.05), while the serum CD4<sup>+</sup>/CD8<sup>+</sup>,CD4<sup>+</sup> cells, immunoglobulin G (IgG) levels, forced expiratory volume in one second (FEV<sub>1</sub>),and FEV<sub>1</sub>/forced vital capacity (FVC) in the observation group were higher than those in the control group (<italic>P</italic><0.05). A significant difference was observed in the total response rate between the observation group [56.25% (27/48)] and the control group [35.42% (17/48)] (<italic>χ</italic><sup>2</sup>=4.191,<italic>P</italic><0.05). For adverse reactions,the incidence of bone marrow suppression(<italic>χ</italic><sup>2</sup>=4.002), gastrointestinal reaction (<italic>χ</italic><sup>2</sup>=7.069),and hepatic and renal injury (<italic>χ</italic><sup>2</sup>=5.151) was lower in the observation group than in the control group (<italic>P</italic><0.05). Conclusion:For postoperative patients with non-small cell lung cancer (Qi deficiency in lung and spleen) after chemotherapy, western medicine combined with modified BZYQT could ameliorate immune function, promote pulmonary function recovery, improve clinical efficacy, and reduce the incidence of adverse reactions.

19.
J Int Med Res ; 48(11): 300060520964662, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33147419

ABSTRACT

OBJECTIVE: In this study, we aimed to identify prognostic immune-related genes and establish a prognostic model for laryngeal cancer based on these genes. METHODS: Transcriptome profiles and clinical data of patients with laryngeal cancer were downloaded from The Cancer Genome Atlas database. Integrated bioinformatics analyses were performed to identify genes associated with prognosis. RESULTS: Thirty prognostic immune-related genes for laryngeal cancer were identified. We constructed a regulatory network of prognosis comprising transcription factors and immune-related genes. Multivariate Cox regression analyses identified 15 immune-related genes in the network that were used to establish the prognostic model. The model exhibited excellent prognostic prediction ability with a high area under the curve value (0.916). The calculated risk score based on expression of the 15 immune-related genes was shown to be an independent prognostic factor for laryngeal cancer. CONCLUSION: We identified prognostic immune-related genes and established a prognostic model for laryngeal cancer, which might help identify novel predictive biomarkers and therapeutic targets of laryngeal cancer.


Subject(s)
Laryngeal Neoplasms , Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Laryngeal Neoplasms/genetics , Prognosis
20.
Braz J Med Biol Res ; 53(11): e9551, 2020.
Article in English | MEDLINE | ID: mdl-33053115

ABSTRACT

The objective of this study was to investigate the effect of Mycobacterium vaccae on Jagged 1 and gamma delta T17 (γδT17) cells in asthmatic mice. An asthma mouse model was established through immunization with ovalbumin (OVA). Gamma-secretase inhibitor (DAPT) was used to block the Notch signaling pathway. M. vaccae was used to treat asthma, and related indicators were measured. Blocking Notch signaling inhibited the production of γδT17 cells and secretion of cytokine interleukin (IL)-17, which was accompanied by a decrease in Jagged1 mRNA and protein expression in the treated asthma group compared with the untreated asthma group. Similarly, treatment with M. vaccae inhibited Jagged1 expression and γδT17 cell production, which was associated with decreased airway inflammation and reactivity. The Notch signaling pathway may play a role in the pathogenesis of asthma through the induction of Jagged1 receptor. On the other hand, the inhibitory effect of M. vaccae on Jagged1 receptor in γδT17 cells could be used for the prevention and treatment of asthma.


Subject(s)
Mycobacterium , Signal Transduction , Animals , Jagged-1 Protein , Mice , Ovalbumin , Receptors, Notch
SELECTION OF CITATIONS
SEARCH DETAIL
...