Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(6): 2063-2073, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38757533

ABSTRACT

Primary amoebic meningoencephalitis (PAM) is a rare and fulminant neurodegenerative disease caused by the free-living amoeba Naegleria fowleri. Currently, there is a lack of standardized protocols for therapeutic action. In response to the critical need for effective therapeutic agents, we explored the Global Health Priority Box, a collection of 240 compounds provided by the Medicines for Malaria Venture (MMV). From this pool, flucofuron emerged as a promising candidate, exhibiting high efficacy against trophozoites of both N. fowleri strains (ATCC 30808 IC50 : 2.58 ± 0.64 µM and ATCC 30215 IC50: 2.47 ± 0.38 µM), being even active against the resistant cyst stage (IC50: 0.88 ± 0.07 µM). Moreover, flucofuron induced diverse metabolic events that suggest the triggering of apoptotic cell death. This study highlights the potential of repurposing medications for treating challenging diseases, such as PAM.


Subject(s)
Naegleria fowleri , Naegleria fowleri/drug effects , Humans , Trophozoites/drug effects , Antiprotozoal Agents/pharmacology , Drug Repositioning , Apoptosis/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Amebiasis/drug therapy , Amebiasis/parasitology
2.
Int J Parasitol Drugs Drug Resist ; 25: 100545, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718717

ABSTRACT

Naegleria fowleri, known as the brain-eating amoeba, is the pathogen that causes the primary amoebic meningoencephalitis (PAM), a severe neurodegenerative disease with a fatality rate exceeding 95%. Moreover, PAM cases commonly involved previous activities in warm freshwater bodies that allow amoebae-containing water through the nasal passages. Hence, awareness among healthcare professionals and the general public are the key to contribute to a higher and faster number of diagnoses worldwide. Current treatment options for PAM, such as amphotericin B and miltefosine, are limited by potential cytotoxic effects. In this context, the repurposing of existing compounds has emerged as a promising strategy. In this study, the evaluation of the COVID Box which contains 160 compounds demonstrated significant in vitro amoebicidal activity against two type strains of N. fowleri. From these compounds, terconazole, clemastine, ABT-239 and PD-144418 showed a higher selectivity against the parasite compared to the remaining products. In addition, programmed cell death assays were conducted with these four compounds, unveiling compatible metabolic events in treated amoebae. These compounds exhibited chromatin condensation and alterations in cell membrane permeability, indicating their potential to induce programmed cell death. Assessment of mitochondrial membrane potential disruption and a significant reduction in ATP production emphasized the impact of these compounds on the mitochondria, with the identification of increased ROS production underscoring their potential as effective treatment options. This study emphasizes the potential of the mentioned COVID Box compounds against N. fowleri, providing a path for enhanced PAM therapies.

3.
Front Microbiol ; 15: 1356452, 2024.
Article in English | MEDLINE | ID: mdl-38426057

ABSTRACT

Introduction: Free-living amoebae are an extensive group of protistans that can be found in a wide variety of environments. Among them, the Acanthamoeba genus and Naegleria fowleri stand out as two of the most pathogenic amoebae and with a higher number of reported cases. N. fowleri is mainly found in warm freshwater water bodies whereas amoebae of the Acanthamoeba genus are broadly distributed through natural and anthropogenic environments. In this regard, the management and the control of the amoebic populations in swimming pools has become a major public health challenge for institutions. Methods: The aim of this work was to evaluate the growth pattern of trophozoites of A. griffini and N. fowleri at different temperatures and salt concentrations. Results and discussion: Our results showed that A. griffini resisted a higher concentration of salt than N. fowleri. Moreover, no trophozoites could withstand the salt levels of the sea in in vitro conditions. This work supports the contention that salinity could represent an important and useful tool for the control of the most pathogenic amoebic populations in recreational water bodies.

4.
Antibiotics (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627700

ABSTRACT

Among the pathogenic free-living amoebae (FLA), Naegleria fowleri is the etiological agent of a fatal disease known as primary amoebic meningoencephalitis (PAM). Once infection begins, the lesions generated in the central nervous system (CNS) result in the onset of symptoms leading to death in a short period of time. Currently, there is no standardized treatment against the infection, which, due to the high virulence of the parasite, results in a high case fatality rate (>97%). Therefore, it is essential to search for new therapeutic sources that can generate a rapid elimination of the parasite. In recent years, there have already been several successful examples of drug repurposing, such as Nitroxoline, for which, in addition to its known bioactive properties, anti-Balamuthia activity has recently been described. Following this approach, the anti-Naegleria activity of Nitroxoline was tested. Nitroxoline displayed low micromolar activity against two different strains of N. fowleri trophozoites (IC50 values of 1.63 ± 0.37 µM and 1.17 ± 0.21 µM) and against cyst stages (IC50 of 1.26 ± 0.42 µM). The potent anti-parasitic activity compared to the toxicity produced (selectivity index of 3.78 and 5.25, respectively) in murine macrophages and human cell lines (reported in previous studies), together with the induction of programmed cell death (PCD)-related events in N. fowleri make Nitroxoline a great candidate for an alternative PAM treatment.

5.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513922

ABSTRACT

Naegleria fowleri is the causative agent of a central nervous system affecting disease called primary amoebic meningoencephalitis. It is a fulminant disease with a rapid progression that affects mainly children and young adults who report previous water exposure. Current treatment options are not totally effective and involve several side effects. In this work, six meroterpenoids isolated from the brown algae Gongolaria abies-marina were evaluated against N. fowleri. Gongolarone B (1), 6Z-1'-methoxyamentadione (2), and 1'-methoxyamentadione (3) were the most active molecules against N. fowleri with IC50 values between 13.27 ± 0.96 µM and 21.92 ± 1.60 µM. However, cystomexicone B (6) was the molecule with the highest selectivity index (>8.5). Moreover, all these compounds induced different cellular events compatible with the apoptosis-like PCD process, such as chromatin condensation, damages at the mitochondrial level, cell membrane disruption, and production of reactive oxygen species (ROS). Therefore, G. abies-marina could be considered as a promising source of active molecules to treat the N. fowleri infections.

6.
Front Cell Infect Microbiol ; 13: 1173213, 2023.
Article in English | MEDLINE | ID: mdl-37389217

ABSTRACT

COVID-19 is characterized by a wide range of symptoms where the genetic background plays a key role in SARS-CoV-2 infection. In this study, the relative expression of IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC genes (related to immunity and antiviral activity) was analyzed in upper airway samples from 127 individuals (97 COVID-19 positive and 30 controls) by using a two-step RT-PCR. All genes excepting IL1B (p=0.878) showed a significantly higher expression (p<0.005) in COVID-19 cases than in the samples from the control group suggesting that in asymptomatic-mild cases antiviral and immune system cells recruitment gene expression is being promoted. Moreover, IFI6 (p=0.002) and OAS1 (p=0.044) were upregulated in cases with high viral loads, which could be related to protection against severe forms of this viral infection. In addition, a higher frequency (68.7%) of individuals infected with the Omicron variant presented higher viral load values of infection when compared to individuals infected with other variants (p<0.001). Furthermore, an increased expression of IRF9 (p<0.001), IFI6 (p<0.001), OAS1 (p=0.011), CCL5, (p=0.003) and TGFB1 (p<0.001) genes was observed in individuals infected with SARS-CoV-2 wildtype virus, which might be due to immune response evasion of the viral variants and/or vaccination. The obtained results indicate a protective role of IFI6, OAS1 and IRF9 in asymptomatic -mild cases of SARS-CoV-2 infection while the role of TGFB1 and CCL5 in the pathogenesis of the disease is still unclear. The importance of studying the dysregulation of immune genes in relation to the infective variant is stand out in this study.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Antiviral Agents , SARS-CoV-2/genetics , Immune Evasion
7.
Article in English | MEDLINE | ID: mdl-37270868

ABSTRACT

Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 µM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis.


Subject(s)
Amoeba , Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , Animals , Mice , Central Nervous System Protozoal Infections/drug therapy
8.
ACS Chem Neurosci ; 14(11): 2123-2133, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37167960

ABSTRACT

Naegleria fowleri is a pathogenic amoeba that causes a fulminant and rapidly progressive disease affecting the central nervous system called primary amoebic meningoencephalitis (PAM). Moreover, the disease is fatal in more than 97% of the reported cases, mostly affecting children and young people after practicing aquatic activities in nontreated fresh and warm water bodies contaminated with these amoebae. Currently, the treatment of primary amoebic meningoencephalitis is based on a combination of different antibiotics and antifungals, which are not entirely effective and lead to numerous side effects. In the recent years, research against PAM is focused on the search of novel, less toxic, and fully effective antiamoebic agents. Previous studies have reported the activity of cyano-substituted molecules in different protozoa. Therefore, the activity of 46 novel synthetic cyanomethyl vinyl ethers (QOET-51 to QOET-96) against two type strains of N. fowleri (ATCC 30808 and ATCC 30215) was determined. The data showed that QOET-51, QOET-59, QOET-64, QOET-67, QOET-72, QOET-77, and QOET-79 were the most active molecules. In fact, the selectivity index (CC50/IC50) was sixfold higher when compared to the activities of the drugs of reference. In addition, the mechanism of action of these compounds was studied, with the aim to demonstrate the induction of a programmed cell death process in N. fowleri.


Subject(s)
Amoeba , Central Nervous System Protozoal Infections , Naegleria fowleri , Child , Humans , Adolescent , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Ethers/pharmacology
9.
Mar Drugs ; 21(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37103363

ABSTRACT

Naegleria fowleri is an opportunistic protozoon that can be found in warm water bodies. It is the causative agent of the primary amoebic meningoencephalitis. Focused on our interest to develop promising lead structures for the development of antiparasitic agents, this study was aimed at identifying new anti-Naegleria marine natural products from a collection of chamigrane-type sesquiterpenes with structural variety in the levels of saturation, halogenation and oxygenation isolated from Laurencia dendroidea. (+)-Elatol (1) was the most active compound against Naegleria fowleri trophozoites with IC50 values of 1.08 µM against the ATCC 30808™ strain and 1.14 µM against the ATCC 30215™ strain. Furthermore, the activity of (+)-elatol (1) against the resistant stage of N. fowleri was also assessed, showing great cysticidal properties with a very similar IC50 value (1.14 µM) to the one obtained for the trophozoite stage. Moreover, at low concentrations (+)-elatol (1) showed no toxic effect towards murine macrophages and could induce the appearance of different cellular events related to the programmed cell death, such as an increase of the plasma membrane permeability, reactive oxygen species overproduction, mitochondrial malfunction or chromatin condensation. Its enantiomer (-)-elatol (2) was shown to be 34-fold less potent with an IC50 of 36.77 µM and 38.03 µM. An analysis of the structure-activity relationship suggests that dehalogenation leads to a significant decrease of activity. The lipophilic character of these compounds is an essential property to cross the blood-brain barrier, therefore they represent interesting chemical scaffolds to develop new drugs.


Subject(s)
Laurencia , Naegleria fowleri , Sesquiterpenes , Spiro Compounds , Animals , Mice , Laurencia/chemistry , Spiro Compounds/pharmacology , Sesquiterpenes/pharmacology
10.
Microbiol Spectr ; 10(4): e0051522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862997

ABSTRACT

Primary amoebic meningoencephalitis (PAM) is a lethal and rapid infection that affects the central nervous system and is caused by the free-living amoeba Naegleria fowleri. The life cycle of this protozoa consists of three different stages: The trophozoite, flagellate and cyst stages. Currently, no fully effective molecules have been found to treat PAM. In the search of new antiamoebic molecules, most of the efforts have focused on the trophozoidal activity of the compounds. However, there are no reports on the effect of the compounds on the N. fowleri cyst viability. In the present study, the cysticidal activity of four different molecules was evaluated using an alamarBlue based fluorometric assay. All the tested compounds were active against the cyst stage of N. fowleri. In fact, all the molecules except the amphotericin B, showed highest activity toward the cyst stage than the trophozoite stage. This work could be an effective protocol to select molecules with cysticidal and trophozoidal activity that can be considered a future PAM treatment. IMPORTANCE In the search of new anti-Naegleria fowleri compounds, most of the works focus on the activity of different molecules against the trophozoite stage; however, none of them include the effect of those compounds on the cyst viability. This manuscript presents a solid and reliable assay to evaluate the activity of compounds against the cyst stage of N. fowleri.


Subject(s)
Central Nervous System Protozoal Infections , Cysts , Naegleria fowleri , Central Nervous System Protozoal Infections/parasitology , Humans
11.
Biomed Pharmacother ; 147: 112694, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131659

ABSTRACT

Naegleria fowleri is the causative agent the primary amoebic meningoencephalitis (PAM), a fatal disease in more than the 90% of the reported cases that affects the central nervous system. The amoeba infects the nasal cavity of mostly children and young adults who report previous aquatic exposure in warm water sources. The rapid progression of the disease and the lack of effective and safety therapeutic options make the search of new anti-amoebic compounds an urgent issue. In this study, twelve sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata were tested against the trophozoite stage of Naegleria fowleri. Anhydroartemorin (2) and 1(10)Z,4E,14-acetoxy-costunolide (3) showed the best anti-amoeboid activity values with IC50 23.02 ± 1.26 and 28.34 ± 6.27, respectively. In addition, the mechanisms of programmed cell death induction of these two molecules were evaluated with positive results for both compounds. Finally, a structure-activity relationship was analyzed to reveal the dependence of reactivity and lipophilicity on the biological activity. The log P values of the compounds were calculated to postulate them as good candidates to cross the blood-brain barrier, a limiting factor in the development of new anti-Naegleria treatments. Therefore, the mentioned sesquiterpene lactones could be considered as potential PAM therapeutic options in the future.


Subject(s)
Naegleria fowleri/drug effects , Sesquiterpenes/pharmacology , Thoracica , Tissue Extracts/pharmacology , Animals , Apoptosis/drug effects , Blood-Brain Barrier/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Sesquiterpenes/chemistry , Structure-Activity Relationship
12.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34681237

ABSTRACT

Primary amoebic encephalitis (PAM) caused by the opportunistic pathogen Naegleria fowleri is characterized as a rapid and lethal infection of the brain which ends in the death of the patient in more than 90% of the reported cases. This amoeba thrives in warm water bodies and causes infection after individuals perform risky activities such as splashing or diving, mostly in non-treated water bodies such as lakes and ponds. Moreover, the infection progresses very fast and no fully effective molecules have currently been found to treat PAM. In this study, naphthyridines fused with chromenes or chromenones previously synthetized by the group were tested in vitro against the trophozoite stage of two strains of N. fowleri. In addition, the most active molecule was evaluated in order to check the induction of programmed cell death (PCD) in the treated amoebae. Compound 3 showed good anti-Naegleria activity (61.45 ± 5.27 and 76.61 ± 10.84 µM, respectively) against the two different strains (ATCC® 30808 and ATCC® 30215) and a good selectivity compared to the cytotoxicity values (>300 µM). In addition, it was able to induce PCD, causing DNA condensation, damage at the cellular membrane, reduction in mitochondrial membrane potential and ATP levels, and ROS generation. Hence, naphthyridines fused with chromenes or chromenones could be potential therapeutic agents against PAM in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL
...