Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38894194

ABSTRACT

Measuring temperature inside chemical reactors is crucial to ensuring process control and safety. However, conventional methods face a number of limitations, such as the invasiveness and the restricted dynamic range. This paper presents a novel approach using ultrasound transducers to enable accurate temperature measurements. Our experiments, conducted within a temperature range of 28.8 to 83.8 °C, reveal a minimal temperature accuracy of 98.6% within the critical zone spanning between 70.5 and 75 °C, and an accuracy of over 99% outside this critical zone. The experiments focused on a homogeneous environment of distilled water within a stainless-steel tank. This approach will be extended in a future research in order to diversify the experimental media and non-uniform environments, while promising broader applications in chemical process monitoring and control.

2.
Waste Manag ; 171: 482-490, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37804736

ABSTRACT

Phosphogypsum (PG) is a co-product of the phosphoric acid industry. To reduce the environmental impact and land occupation caused by PG disposal, researchers are trying to integrate it into building materials, agriculture, etc. Herein, PG decomposition with carbon monoxide (CO) was studied with i) thermogravimetric analysis (TGA), ii) induction heated fluidized bed reactor (IHFBR), and iii) thermodynamically using FactSageTM. Experimentally, PG starts decomposing around 600 °C and produces mainly calcium sulfide (CaS) at high CO partial pressure, above 50 %, and mainly to calcium oxide (CaO) at lower CO partial pressure (<20 %). At 1000 °C and above, CaSO4 was completely converted to CaS, CaO, and minor co-products due to the presence of impurities in PG. Elemental and XRD analyses were adopted to understand the reaction mechanisms of PG decomposition. Thermodynamic simulations confirmed the full conversion of calcium sulfate (CaSO4) above 600 °C for a CO/CaSO4 ratio above 6.81 (mol/mol), whereas only 60 % conversion would be achieved at 1500 °C and lower ratio (<0.49 (mol/mol)). As a result, CaS and CaO may be produced, depending on the temperature and CO partial pressure.

3.
ACS Omega ; 8(17): 15099-15113, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151556

ABSTRACT

The developed nanocomposite exhibits significantly enhanced shielding performance due to the synergistic effect of high dielectric and magnetic loss materials, which modifies the material's impedance and improves its absorption ability. Different weight percentages (0, 1, 5, 10, 15, 20, and 25 wt %) of thermally treated chemically reduced graphene oxide (TCRGO) were combined with two types of magnets, barium hexaferrite (BF) and magnetite (MAG), using a dry powder compaction technique to produce binary ceramic nanocomposite sheets. The shielding performance of a 1 mm thick compressed nanoceramic sheet over the X-band was evaluated using a vector network analyzer. The 25% TCRGO showed high shielding performance for both BF and MAG, while BF had a total shielding efficiency (SET) that exceeded MAG by 130%. The SET of 25 wt % TCRGO/BF was 52 dB, with a 41 dB absorption shielding efficiency (SEA). Additionally, the effect of different levels of incident electromagnetic wave power (0.001-1000 mW) at various thicknesses (1, 2, and 5 mm) was explored. At 1000 mW, the 5 mm TCRGO/BF had an SET of 99 dB, an SEA of 91 dB, and a reflection shielding efficiency (SER) of 8 dB. The use of BF as a hard magnet paired with TCRGO exhibited excellent and stable electromagnetic shielding performance.

4.
Sci Total Environ ; 854: 158445, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36058335

ABSTRACT

The versatility of microalgae biomass as candidates for various products and bioremediation needs motivates interests towards design and implementation of novel microalgae bioreactors. Conventional open-reactors are reliant on large quantities of sunlight and space while yields are constrained by outdoor environment conditions. Conversely, closed-reactor systems like bubble columns reduces these constrains on microalgae growth while occupying far less space at the expense of high energy demands, notably from lighting systems. A novel patented closed reactor design has recently been proposed that improves the bubble column concept with an efficient and effective lighting system. The present study uses Life Cycle Assessment approach to compare the environmental performance of conventional reactors and the proposed internally luminated novel closed reactor design, expressing impacts per kg biostimulant for the Scenedesmus almeriensis harvest from such units. All performance data was collected from a pilot facility in Almeria, Spain. Urban-industrial symbiosis scenarios are also portrayed in the study using wastewater and incinerator flue gas. Results show that under synthetic nutrient and carbon inputs in Spanish pilot operations, the cumulative energy demand for the novel photobioreactors is similar to conventional vertically-stacked horizon bioreactors but are substantially more demanding than conventional open reactors. However, when leveraging renewable energy sources and the photosynthesis process to consume wastestreams in urban-industrial symbiosis scenarios, the novel photobioreactor was able to achieve up to 80 % improvements in several impact categories e.g. eutrophication and climate change. Impact mitigation credits per kg dwt biomass across all energy scenarios in symbiosis amount to ≈1.8 kg CO2eq and ≈0.09 kg PO4 eq. This highlights that such closed and internally illuminated photobioreactors can be competitive with conventional reactors, and have potential to harness photosynthesis to reduce environmental burdens in an urban-industrial symbiosis setting. Possible economies of scale and the associated potential gains in efficiencies are further discussed.


Subject(s)
Microalgae , Animals , Symbiosis , Photobioreactors , Environment , Life Cycle Stages , Biomass
5.
RSC Adv ; 12(35): 22608-22622, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36105968

ABSTRACT

The chemical reduction process of graphene oxide combined with a mild and controllable thermal treatment under vacuum at 200 °C for 4 hours provided a cost-effective, scalable, and high-yield route for Reduced Graphene Oxide (RGO) industrial production and became a potential candidate for producing electromagnetic interference (EMI) shielding. We investigated graphite, and RGO using l-ascorbic acid and Sodium borohydride before and after thermal treatment by carefully evaluating the chemical and morphological structures. The thermally treated l-ascorbic Acid reduction route (TCRGOL) conductivity was 2.14 × 103 S m-1 and total shielding efficiency (SET) based on mass loadings per area of shielding was 94 dB with about one-tenth less graphite weight and surpassing other graphene reduction mechanisms in the frequency range of 8.2-12.4 GHz, i.e., X-band, at room temperature while being tested using the waveguide line technique. The developed treatment represents valuable progress in the path to chemical reduction using a safe reducing agent and offering superior quality RGO rarely achieved with the top-down technique, providing a high EMI shielding performance.

6.
Environ Pollut ; 307: 119573, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35671894

ABSTRACT

Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO2/Al2O3 ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2-C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6-64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.

7.
Sci Rep ; 8(1): 8940, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895961

ABSTRACT

Natural gas is a robust and environmentally friendlier alternative to oil resources for energy and chemicals production. However, gas is distributed globally within shales and hydrates, which are generally remote and difficult reserves to produce. The accessibility, transportation, and distribution, therefore, bring major capital costs. With today's low and foreseen low price of natural gas, conversion of natural gas to higher value-added chemicals is highly sought by industry. Dry reforming of methane (DRM) is a technology pathway to convert two critical greenhouse gas components, CH4 and CO2, to syngas, a commodity chemical feedstock. To date, the challenges of carbon deposition on the catalyst and evolution of secondary gas-phase products have prevented the commercial application of the DRM process. The recent exponential growth of renewable electricity resources, wind and solar power, provides a major opportunity to activate reactions by harnessing low-cost carbon-free energy via microwave-heating. This study takes advantage of differences in dielectric properties of materials to enable selective heating by microwave to create a large thermal gradient between a catalyst surface and the gas phase. Consequently, the reaction kinetics at the higher temperature catalyst surface are promoted while the reactions of lower temperature secondary gas-phase are reduced.

8.
J Hazard Mater ; 318: 48-53, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27399146

ABSTRACT

The objective of this work is to evaluate the selectivity and solubility of a buffer chelant. The buffer chelant is ethylenediamine-nitrilotriacetic acid (NTA·3EDA) and its performance is compared to NTA. All experiments were conducted on batches of 25g of soil in an autoclave at 25°C or 75°C with a constant L:S ratio of 2. The experiments were conducted under a CO2 overhead to lower the reaction pH. The buffer chelant allows a 5-fold selectivity increase for heavy metals while increasing or maintaining the same molar extraction yield compared to NTA. These selectivity and extraction results stand out from those obtained with other neutralized NTA. NTA, EDA and the acid gas CO2 are the three necessary ligands in the NTA·3EDA extraction mechanism. A reaction temperature setpoint increase causes a higher Fe dissolution. However, this does not lower the NTA and NTA·3EDA selectivity for heavy metals. Thus, Fe is a non-interfering cation in the NTA and NTA·3EDA extraction mechanisms. This non-interference is less apparent in the NTA extraction mechanism. The present work intends to share another perspective on the design of more selective and soluble chelants for heavy metal extraction.

9.
Chemosphere ; 145: 200-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26702553

ABSTRACT

This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage.


Subject(s)
Oxidants/chemistry , Petroleum , Sodium Hypochlorite/chemistry , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Soil/chemistry
10.
Bioresour Technol ; 175: 254-61, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25459830

ABSTRACT

This work is part of a series of investigations on pyrolysis of lignin. After obtaining the necessary information regarding the quantity and quality of the obtained products, a first step economics evaluation for converting lignin into chemicals was essential. To accomplish this aim, a pyrolysis plant with a 50t/d capacity was designed, and the total capital investment and operating costs were estimated. Next, the minimal selling price of the obtained dry oil was calculated and the effect of crucial variables on the estimated price was examined. The key result indicates the estimated selling price would not compete with the price of the chemicals that are fossil fuel based, which is primarily due to the high cost of the feedstock. To overcome this challenge, different scenarios for reducing the selling price of the obtained oil, which consequently is helping by taking a place among the fossil fuel based chemicals, were discussed.


Subject(s)
Biofuels/economics , Costs and Cost Analysis , Lignin/chemistry , Models, Theoretical , Biotechnology , Capital Expenditures
11.
Appl Radiat Isot ; 89: 109-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24607536

ABSTRACT

The radioactive particle tracking (RPT) technique is a non-intrusive experimental velocimetry and tomography technique extensively applied to the study of hydrodynamics in a great variety of systems. In this technique, arrays of scintillation detector are used to track the motion of a single radioactive tracer particle emitting isotropic γ-rays. This work describes and applies an optimization strategy developed to find an optimal set of positions for the scintillation detectors used in the RPT technique. This strategy employs the overall resolution of the detectors as the objective function and a mesh adaptive direct search (MADS) algorithm to solve the optimization problem. More precisely, NOMAD, a C++ implementation of the MADS algorithm is used. First, the optimization strategy is validated using simple cases with known optimal detector configurations. Next, it is applied to a three-dimensional axisymmetric system (i.e. a vertical cylinder, which could represent a fluidized bed, bubble column, riser or else). The results obtained using the optimization strategy are in agreement with what was previously recommended by Roy et al. (2002) for a similar system. Finally, the optimization strategy is used for a system consisting of a partially filled cylindrical tumbler. The application of insights gained by the optimization strategy is shown to lead to a significant reduction in the error made when reconstructing the position of a tracer particle. The results of this work show that the optimization strategy developed is sensitive to both the type of objective function used and the experimental conditions. The limitations and drawbacks of the optimization strategy are also discussed.

12.
Bioresour Technol ; 154: 101-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24384316

ABSTRACT

Microwave pyrolysis of lignin, an aromatic polymer byproduct from paper-pulping industry, produces char, gases, and lignin pyrolysis oil. Within the oil are valuable phenolic compounds such as phenol, guaiacol and catechol. In this work, we describe a method using switchable hydrophilicity solvents (SHS) to extract phenols as a mixture from lignin microwave-pyrolysis oil at the scale of 10 g of bio-oil. Even at this small scale, losses are small; 96% of the bio-oil was recovered in its three fractions, 72% of guaiacol and 70% of 4-methylguaiacol, the most abundant phenols in the bio-oil, were extracted and 91% of the solvent SHS was recovered after extraction. The starting material (lignin microwave-pyrolysis oil) and the three fractions resulted from SHS extraction were characterized by GC-MS and quantitative (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy.


Subject(s)
Biotechnology/methods , Hydrophobic and Hydrophilic Interactions , Lignin/chemistry , Microwaves , Oils/chemistry , Phenols/isolation & purification , Solvents/chemistry , Chemical Fractionation , Hot Temperature , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...