Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 3: 665946, 2021.
Article in English | MEDLINE | ID: mdl-34713139

ABSTRACT

Consumer wearable activity trackers, such as Fitbit are widely used in ubiquitous and longitudinal sleep monitoring in free-living environments. However, these devices are known to be inaccurate for measuring sleep stages. In this study, we develop and validate a novel approach that leverages the processed data readily available from consumer activity trackers (i.e., steps, heart rate, and sleep metrics) to predict sleep stages. The proposed approach adopts a selective correction strategy and consists of two levels of classifiers. The level-I classifier judges whether a Fitbit labeled sleep epoch is misclassified, and the level-II classifier re-classifies misclassified epochs into one of the four sleep stages (i.e., light sleep, deep sleep, REM sleep, and wakefulness). Best epoch-wise performance was achieved when support vector machine and gradient boosting decision tree (XGBoost) with up sampling were used, respectively at the level-I and level-II classification. The model achieved an overall per-epoch accuracy of 0.731 ± 0.119, Cohen's Kappa of 0.433 ± 0.212, and multi-class Matthew's correlation coefficient (MMCC) of 0.451 ± 0.214. Regarding the total duration of individual sleep stage, the mean normalized absolute bias (MAB) of this model was 0.469, which is a 23.9% reduction against the proprietary Fitbit algorithm. The model that combines support vector machine and XGBoost with down sampling achieved sub-optimal per-epoch accuracy of 0.704 ± 0.097, Cohen's Kappa of 0.427 ± 0.178, and MMCC of 0.439 ± 0.180. The sub-optimal model obtained a MAB of 0.179, a significantly reduction of 71.0% compared to the proprietary Fitbit algorithm. We highlight the challenges in machine learning based sleep stage prediction with consumer wearables, and suggest directions for future research.

2.
JMIR Mhealth Uhealth ; 7(6): e13384, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31172956

ABSTRACT

BACKGROUND: It has become possible for the new generation of consumer wristbands to classify sleep stages based on multisensory data. Several studies have validated the accuracy of one of the latest models, that is, Fitbit Charge 2, in measuring polysomnographic parameters, including total sleep time, wake time, sleep efficiency (SE), and the ratio of each sleep stage. Nevertheless, its accuracy in measuring sleep stage transitions remains unknown. OBJECTIVE: This study aimed to examine the accuracy of Fitbit Charge 2 in measuring transition probabilities among wake, light sleep, deep sleep, and rapid eye movement (REM) sleep under free-living conditions. The secondary goal was to investigate the effect of user-specific factors, including demographic information and sleep pattern on measurement accuracy. METHODS: A Fitbit Charge 2 and a medical device were used concurrently to measure a whole night's sleep in participants' homes. Sleep stage transition probabilities were derived from sleep hypnograms. Measurement errors were obtained by comparing the data obtained by Fitbit with those obtained by the medical device. Paired 2-tailed t test and Bland-Altman plots were used to examine the agreement of Fitbit to the medical device. Wilcoxon signed-rank test was performed to investigate the effect of user-specific factors. RESULTS: Sleep data were collected from 23 participants. Sleep stage transition probabilities measured by Fitbit Charge 2 significantly deviated from those measured by the medical device, except for the transition probability from deep sleep to wake, from light sleep to REM sleep, and the probability of staying in REM sleep. Bland-Altman plots demonstrated that systematic bias ranged from 0% to 60%. Fitbit had the tendency of overestimating the probability of staying in a sleep stage while underestimating the probability of transiting to another stage. SE>90% (P=.047) was associated with significant increase in measurement error. Pittsburgh sleep quality index (PSQI)<5 and wake after sleep onset (WASO)<30 min could be associated to significantly decreased or increased errors, depending on the outcome sleep metrics. CONCLUSIONS: Our analysis shows that Fitbit Charge 2 underestimated sleep stage transition dynamics compared with the medical device. Device accuracy may be significantly affected by perceived sleep quality (PSQI), WASO, and SE.


Subject(s)
Sleep Stages/physiology , Wearable Electronic Devices/standards , Weights and Measures/instrumentation , Weights and Measures/standards , Adult , Female , Humans , Japan , Male , Polysomnography/instrumentation , Reproducibility of Results , Surveys and Questionnaires , Wearable Electronic Devices/statistics & numerical data
3.
J Healthc Inform Res ; 2(1-2): 152-178, 2018 Jun.
Article in English | MEDLINE | ID: mdl-35415400

ABSTRACT

Consumer sleep tracking technologies offer an unobtrusive and cost-efficient way to monitor sleep in free-living conditions. Technological advances in hardware and software have significantly improved the functionality of the new gadgets that recently appeared in the market. However, whether the latest gadgets can provide valid measurements on overall sleep parameters and sleep structure such as deep and REM sleep has not been examined. In this study, we aimed to investigate the validity of the latest consumer sleep tracking devices including an activity wristband Fitbit Charge 2 and a wearable EEG-based eye mask Neuroon in comparison to a medical sleep monitor. First, we confirmed that Fitbit Charge 2 can automatically detect the onset and offset of sleep with reasonable accuracy. Second, analysis found that both consumer devices produced comparable results in measuring total sleep duration and sleep efficiency compared to the medical device. In addition, Fitbit accurately measured the number of awakenings, while Neuroon with good signal quality had satisfactory performance on total awake time and sleep onset latency. However, measuring sleep structure including light, deep, and REM sleep remains to be challenging for both consumer devices. Third, greater discrepancies were observed between Neuroon and the medical device in nights with more disrupted sleep and when the signal quality was poor, but no trend was observed in Fitbit Charge 2. This study suggests that current consumer sleep tracking technologies may be immature for diagnosing sleep disorders, but they are reasonably satisfactory for general purpose and non-clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...