Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 110(5): 1255-1270, 2022 06.
Article in English | MEDLINE | ID: mdl-35315556

ABSTRACT

Chewing herbivores activate plant defense responses through a combination of mechanical wounding and elicitation by herbivore-associated molecular patterns (HAMPs). HAMPs are wound response amplifiers; however, specific defense outputs may also exist that strictly require HAMP-mediated defense signaling. To investigate HAMP-mediated signaling and defense responses, we characterized cowpea (Vigna unguiculata) transcriptome changes following elicitation by inceptin, a peptide HAMP common in Lepidoptera larvae oral secretions. Following inceptin treatment, we observed large-scale reprogramming of the transcriptome consistent with three different response categories: (i) amplification of mechanical wound responses, (ii) temporal extension through accelerated or prolonged responses, and (iii) examples of inceptin-specific elicitation and suppression. At both early and late timepoints, namely 1 and 6 h, large sets of transcripts specifically accumulated following inceptin elicitation. Further early inceptin-regulated transcripts were classified as reversing changes induced by wounding alone. Within key signaling- and defense-related gene families, inceptin-elicited responses included target subsets of wound-induced transcripts. Transcripts displaying the largest inceptin-elicited fold changes included transcripts encoding terpene synthases (TPSs) and peroxidases (POXs) that correspond with induced volatile production and increased POX activity in cowpea. Characterization of inceptin-elicited cowpea defenses via heterologous expression in Nicotiana benthamiana demonstrated that specific cowpea TPSs and POXs were able to confer terpene emission and the reduced growth of beet armyworm (Spodoptera exigua) herbivores, respectively. Collectively, our present findings in cowpea support a model where HAMP elicitation both amplifies concurrent wound responses and specifically contributes to the activation of selective outputs associated with direct and indirect antiherbivore defenses.


Subject(s)
Fabaceae , Vigna , Animals , Fabaceae/genetics , Gene Expression Regulation, Plant , Herbivory/physiology , Plants , Spodoptera , Terpenes/metabolism , Vigna/genetics
2.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229576

ABSTRACT

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Subject(s)
Herbivory/physiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Plants, Genetically Modified , Spodoptera/physiology , Nicotiana/immunology , Vigna/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...