Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
2.
Appl Microbiol Biotechnol ; 105(5): 1889-1904, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33559719

ABSTRACT

Seed coating is a technique to cover seeds with external agents to upgrade their performance, handling, and plant establishment. Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, mycorrhizal fungi, and other fungi (e.g., Trichoderma spp.), decrease agrochemical inputs, enhance tolerance to biotic-abiotic stresses, and increase essential plant nutrition. The demand for pre-treated seeds as delivery systems for biological agents is advancing. Here, a seed coating formulation containing Trichoderma koningiopsis is presented. The physicochemical and biological characterization of the seed coating prototypes included drying protector screening, the effect of the inoculum concentration on survival, the assessment of microbial release profiles in soil extract, and plant tissue colonization capability under semi-controlled conditions. Gelatine and pectin, two of the tested drying protectors, maintained fungus germination after 60 days at 18 °C with significantly higher values of up to 38% compared with the control. The initial concentration of 106 colony-forming units (CFU) per seed undergoes a positive effect on survival over time. Regarding plant tissue colonization, the fungus establishes endophytically in rice. In conclusion, seed coating is a promising alternative for the formulation of beneficial microbial agents such as Trichoderma sp., maintaining cell survival and further promoting the establishment in rice systems.Key points• Enhancing drying survival of T. koningiopsis formulates• Seed coating formulation approach for T. koningiopsis in rice• Colonization capacity of formulated T. koningiopsis in rice tissue.


Subject(s)
Oryza , Trichoderma , Endophytes , Germination , Hypocreales , Seeds
3.
Fungal Biol ; 122(11): 1069-1076, 2018 11.
Article in English | MEDLINE | ID: mdl-30342623

ABSTRACT

The insect-pathogenic fungus Metarhizium rileyi is highly sensitive to nutritional and environmental conditions which makes it difficult to produce as a stable biopesticide. In this study, a Colombian isolate of this fungus was produced in bulk, and conidia were formulated as an emulsifiable concentrate (EC). The stability of formulated conidia was studied. Conidial viability was maintained at >85 % viability for 12 m under refrigeration and for >three months at 18 °C. The pH values were stable, while contaminant content was significantly reduced. The efficacy of the EC to control Spodoptera frugiperda (Smith) was correlated with the storage time using different mathematical models, and conservative values of six and 12 months at 8 °C and 18 °C respectively, were established. Finally, the EC was evaluated in maize plants under glasshouse conditions. The LC50 and LC90 were estimated to be 1.17 × 104 and 4.03 × 106 conidia/mL respectively and a 57 % reduction in recent damage of plants was achieved. This study demonstrated the potential of M. rileyi formulated as EC to control S. frugiperda in maize. Therefore, it is necessary to continue developing this biopesticide, in order to deliver a new tool to be integrated in pest management programs.


Subject(s)
Biological Control Agents/pharmacology , Insecticides/pharmacology , Metarhizium/physiology , Pest Control, Biological/methods , Plant Diseases/parasitology , Spodoptera/microbiology , Animals , Biological Control Agents/chemistry , Drug Stability , Insecticides/chemistry , Metarhizium/chemistry , Pest Control, Biological/instrumentation , Spodoptera/drug effects , Spodoptera/physiology , Zea mays/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...