Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(11): 7740-7744, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38444978

ABSTRACT

The transition metal-mediated dimerisation of terminal alkynes is an attractive and atom-economic method for preparing conjugated 1,3-enynes. Using a phosphine-based macrocyclic pincer ligand, we demonstrate how this transformation can be extended to the synthesis of novel, hydrocarbon-based interlocked molecules: a rotaxane by 'active' metal template synthesis and a catenane by sequential 'active' and 'passive' metal template procedures.

2.
Inorg Chem ; 63(4): 1709-1713, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38207212

ABSTRACT

The synthesis and characterization of a homologous series of T-shaped {MNO}10 nitrosyl complexes of the form [M(PR3)2(NO)]+ (M = Pd, Pt; R = tBu, Ad) are reported. These diamagnetic nitrosyls are obtained from monovalent or zerovalent precursors by treatment with NO and NO+, respectively, and are notable for distinctly bent M-NO angles of ∼123° in the solid state. Adoption of this coordination mode in solution is also supported by the analysis of isotopically enriched samples by 15N NMR spectroscopy. Effective oxidation states of M0/NO+ are calculated, and metal-nitrosyl bonding has been interrogated using DFT-based energy decomposition analysis techniques. While a linear nitrosyl coordination mode was found to be electronically preferred, the M-NO and P-M-P angles are inversely correlated to the extent that binding in this manner is prevented by steric repulsion between the bulky ancillary phosphine ligands.

3.
J Am Chem Soc ; 145(25): 14087-14100, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37318758

ABSTRACT

One-electron oxidation of palladium(0) and platinum(0) bis(phosphine) complexes enables isolation of a homologous series of linear d9 metalloradicals of the form [M(PR3)2]+ (M = Pd, Pt; R = tBu, Ad), which are stable in 1,2-difluorobenzene (DFB) solution for >1 day at room temperature when partnered with the weakly coordinating [BArF4]- (ArF = 3,5-(CF3)2C6H3) counterion. The metalloradicals exhibit reduced stability in THF, decreasing in the order palladium(I) > platinum(I) and PAd3 > PtBu3, especially in the case of [Pt(PtBu3)2]+, which is converted into a 1:1 mixture of the platinum(II) complexes [Pt(PtBu2CMe2CH2)(PtBu3)]+ and [Pt(PtBu3)2H]+ upon dissolution at room temperature. Cyclometalation of [Pt(PtBu3)2]+ can also be induced by reaction with the 2,4,6-tri-tert-butylphenoxyl radical in DFB, and a common radical rebound mechanism involving carbon-to-metal H-atom transfer and formation of an intermediate platinum(III) hydride complex, [Pt(PtBu2CMe2CH2)H(PtBu3)]+, has been substantiated by computational analysis. Radical C-H bond oxidative addition is correlated with the resulting MII-H bond dissociation energy (M = Pt > Pd), and reactions of the metalloradicals with 9,10-dihydroanthracene in DFB at room temperature provide experimental evidence for the proposed C-H bond activation manifold in the case of platinum, although conversion into platinum(II) hydride derivatives is considerably faster for [Pt(PtBu3)2]+ (t1/2 = 1.2 h) than [Pt(PAd3)2]+ (t1/2 ∼ 40 days).

4.
Dalton Trans ; 52(16): 5044-5046, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37066625

ABSTRACT

The synthesis and solid-state characterisation of the heterobimetallic rhodium(III)/silver(I) complex [Rh(2,2'-biphenyl)(CxP2)Cl]⊃Ag+ is described, where CxP2 is a trans-spanning calix[4]arene-based diphosphine and the silver cation is datively bound to the chloride ligand within the cavity of the macrocycle.

5.
Chem Commun (Camb) ; 59(15): 2150-2152, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727440

ABSTRACT

The synthesis and characterisation of the rhodium(III) dinitrogen complex [Rh(2,2'-biphenyl)(CxP2)(N2)]+ are described, where CxP2 is a trans-spanning calix[4]arene-based diphosphine and the dinitrogen ligand is projected into the cavity of the macrocycle.

6.
Dalton Trans ; 52(4): 1096-1104, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36602231

ABSTRACT

The synthesis and iridium coordination chemistry of a new pyridine-based phosphinito pincer ligand 2,6-(ArF2PO)2C5H3N (PONOP-ArF; ArF = 2-(CF3)C6H4) are described, where the P-donors have ortho-trifluoromethylphenyl substituents. The iridium(III) 2,2'-biphenyl (biph) derivative [Ir(PONOP-ArF)(biph)Cl] was obtained by reaction with [Ir(biph)(COD)Cl]2 (COD = 1,5-cyclooctadiene) and subsequent halide ion abstraction enabled isolation of [Ir(PONOP-ArF)(biph)]+ which features an Ir ← F-C bonding interaction in the solid state. Hydrogenolysis of the biphenyl ligand and formation of [Ir(PONOP-ArF)(H)2]+ was achieved by prolonged reaction of [Ir(PONOP-ArF)(biph)]+ with dihydrogen. This transformation paved the way for isolation and crystallographic characterisation of low valent iridium derivatives through treatment of the dihydride with tert-butylethylene (TBE). The iridium(I) π-complex [Ir(PONOP-ArF)(TBE)]+ is thermally stable but substitution of TBE can be achieved by reaction with carbon monoxide. The solid-state structure of the mono-carbonyl product [Ir(PONOP-ArF)(CO)]+ is notable for an intermolecular anagostic interaction between the metal centre and a pentane molecule which co-crystallises within a cleft defined by two aryl phosphine substituents.


Subject(s)
Organometallic Compounds , Organometallic Compounds/chemistry , Iridium/chemistry , Ligands , Biphenyl Compounds
7.
Organometallics ; 41(23): 3557-3567, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36533115

ABSTRACT

Straightforward procedures for the generation of rhodium(I) κCl-chlorocarbon complexes of the form [Rh(PONOP-tBu)(κ Cl-ClR)][BArF 4] [R = CH2Cl, A; Ph, 1; Cy, 2; tBu, 3; PONOP-tBu = 2,6-bis(di-tert-butylphosphinito)pyridine; ArF = 3,5-bis(trifluoromethyl)phenyl] in solution are described, enabling isolation of analytically pure A and crystallographic characterization of the new complexes 1 and 2. Complex 1 was found to be stable at ambient temperature, but prolonged heating in chlorobenzene at 125 °C resulted in formation of [Rh(PONOP-tBu)(Ph)Cl][BArF 4] 4 with experimental and literature evidence pointing toward a concerted C(sp2)-Cl bond oxidative addition mechanism. C(sp3)-Cl bond activation of dichloromethane, chlorocyclohexane, and 2-chloro-2-methylpropane by the rhodium(I) pincer occurred under considerably milder conditions, and radical mechanisms that commence with chloride atom abstraction and involve generation of the rhodium(II) metalloradical [Rh(PONOP-tBu)Cl][BArF 4] 6 are instead proposed. For dichloromethane, [Rh(PONOP-tBu)(CH2Cl)Cl][BArF 4] 5 was formed in the dark, but facile photo-induced reductive elimination occurred when exposed to light. Net dehydrochlorination affording [Rh(PONOP-tBu)(H)Cl][BArF 4] 7 and an alkene byproduct resulted for chlorocyclohexane and 2-chloro-2-methylpropane, consistent with hydrogen atom abstraction from the corresponding alkyl radicals by 6. This suggestion is supported by dynamic hydrogen atom transfer between 6 and 7 on the 1H NMR time scale at 298 K in the presence of TEMPO.

8.
Chemistry ; 28(69): e202202283, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36082961

ABSTRACT

Spectroscopic and computational examination of a homologous series of rhodium(I) pybox carbonyl complexes has revealed a correlation between the conformation of the flanking aryl-substituted oxazoline donors and the carbonyl stretching frequency. This relationship is also observed experimentally for octahedral rhodium(III) and ruthenium(II) variants and cannot be explained through the classical, Dewar-Chatt-Duncanson, interpretation of metal-carbonyl bonding. Instead, these findings are reconciled by local changes in the magnitude of the electric field that is projected along the metal-carbonyl vector: the internal Stark effect.


Subject(s)
Rhodium , Ruthenium , Ligands , Ruthenium/chemistry , Molecular Conformation , Rhodium/chemistry
9.
Dalton Trans ; 51(31): 11617-11619, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35852934

ABSTRACT

The well-defined Pd(I) metalloradical [Pd(PtBu3)2]+ reacts with aryl and alkyl iodides at room temperature, yielding [Pd(PtBu3)(µ-I)]2 and phosphonium salts. Pd(II) aryl/alkyl derivates, reflecting net radical oxidative addition of the substrate to the metalloradical, are generated during the reaction and two examples have been isolated and crystallographically characterised.


Subject(s)
Iodine , Palladium , Carbon , Catalysis , Iodides/chemistry , Palladium/chemistry
10.
Dalton Trans ; 50(7): 2472-2482, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33511383

ABSTRACT

Having recently reported on the synthesis and rhodium complexes of the novel macrocyclic pincer ligand PNP-14, which is derived from lutidine and features terminal phosphine donors trans-substituted with a tetradecamethylene linker (Dalton Trans., 2020, 49, 2077-2086 and Dalton Trans., 2020, 49, 16649-16652), we herein describe our findings critically examining the chemistry of iridium homologues. The five-coordinate iridium(i) and iridium(iii) complexes [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] and [Ir(PNP-14)(2,2'-biphenyl)][BArF4] are readily prepared and shown to be effective precursors for the generation of iridium(iii) dihydride dihydrogen, iridium(i) bis(ethylene), and iridium(i) carbonyl derivatives that highlight important periodic trends by comparison to rhodium counterparts. Reaction of [Ir(PNP-14)H2(H2)][BArF4] with 3,3-dimethylbutene induced triple C-H bond activation of the methylene chain, yielding an iridium(iii) allyl hydride derivative [Ir(PNP-14*)H][BArF4], whilst catalytic homocoupling of 3,3-dimethylbutyne into Z-tBuC[triple bond, length as m-dash]CCHCHtBu could be promoted at RT by [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] (TOFinitial = 28 h-1). The mechanism of the latter is proposed to involve formation and direct reaction of a vinylidene derivative with HC[triple bond, length as m-dash]CtBu outside of the macrocyclic ring and this suggestion is supported experimentally by isolation and crystallographic characterisation of a catalyst deactivation product.

11.
Eur J Inorg Chem ; 2020(41): 3899-3906, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33328794

ABSTRACT

The synthesis and organometallic chemistry of rhodium(I) complex [Rh(CNC-Me)(SOMe2)][BArF 4], featuring NHC-based pincer and labile dimethyl sulfoxide ligands, is reported. This complex reacts with biphenylene and chlorobenzene to afford products resulting from selective C-C and C-Cl bond activation, [Rh(CNC-Me)(2,2'-biphenyl)(OSMe2)][BArF 4] and [Rh(CNC-Me)(Ph)Cl(OSMe2)][BArF 4], respectively. A detailed DFT-based computational analysis indicates that C-H bond oxidative addition of these substrates is kinetically competitive, but in all cases endergonic: contrasting the large thermodynamic driving force calculated for insertion of the metal into the C-C and C-Cl bonds, respectively. Under equivalent conditions the substrates are not activated by the phosphine-based pincer complex [Rh(PNP-iPr)(SOMe2)][BArF 4].

12.
Dalton Trans ; 49(46): 16649-16652, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33174892

ABSTRACT

Through use of a bespoke macrocyclic variant, we demonstrate a novel approach for tuning the reactivity of rhodium PNP pincer complexes that enables formation of conjugated enynes from terminal alkynes, rather than vinylidene derivates. This concept is illustrated using tert-butylacetylene as the substrate and rationalised by a ring-induced switch in mechanism.

13.
Angew Chem Int Ed Engl ; 59(52): 23500-23504, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-32929831

ABSTRACT

By use of a macrocyclic phosphinite pincer ligand and bulky substrate substituents, we demonstrate how the mechanical bond can be leveraged to promote the oxidative addition of an interlocked 1,3-diyne to a rhodium(I) center. The resulting rhodium(III) bis(alkynyl) product can be trapped out by reaction with carbon monoxide or intercepted through irreversible reaction with dihydrogen, resulting in selective hydrogenolysis of the C-C σ-bond.

14.
Chemistry ; 26(64): 14715-14723, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32677713

ABSTRACT

Terminal alkyne coupling reactions promoted by rhodium(I) complexes of macrocyclic NHC-based pincer ligands-which feature dodecamethylene, tetradecamethylene or hexadecamethylene wingtip linkers viz. [Rh(CNC-n)(C2 H4 )][BArF 4 ] (n=12, 14, 16; ArF =3,5-(CF3 )2 C6 H3 )-have been investigated, using the bulky alkynes HC≡CtBu and HC≡CAr' (Ar'=3,5-tBu2 C6 H3 ) as substrates. These stoichiometric reactions proceed with formation of rhodium(III) alkynyl alkenyl derivatives and produce rhodium(I) complexes of conjugated 1,3-enynes by C-C bond reductive elimination through the annulus of the ancillary ligand. The intermediates are formed with orthogonal regioselectivity, with E-alkenyl complexes derived from HC≡CtBu and gem-alkenyl complexes derived from HC≡CAr', and the reductive elimination step is appreciably affected by the ring size of the macrocycle. For the homocoupling of HC≡CtBu, E-tBuC≡CCH=CHtBu is produced via direct reductive elimination from the corresponding rhodium(III) alkynyl E-alkenyl derivatives with increasing efficacy as the ring is expanded. In contrast, direct reductive elimination of Ar'C≡CC(=CH2 )Ar' is encumbered relative to head-to-head coupling of HC≡CAr' and it is only with the largest macrocyclic ligand studied that the two processes are competitive. These results showcase how macrocyclic ligands can be used to interrogate the mechanism and tune the outcome of terminal alkyne coupling reactions, and are discussed with reference to catalytic reactions mediated by the acyclic homologue [Rh(CNC-Me)(C2 H4 )][BArF 4 ] and solvent effects.

15.
Dalton Trans ; 49(18): 5791-5793, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32314773

ABSTRACT

The isolation and solid-state characterisation of complexes featuring partially coordinated benzene, fluorobenzene and all three isomers of difluorobenzene are described. Supported by a DFT analysis, this well-defined homologous series demonstrates the preference for η2-coordination of fluoroarenes via the HC[double bond, length as m-dash]CH sites adjacent to a fluorine substituent.

16.
Chem Sci ; 11(8): 2051-2057, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32180927

ABSTRACT

The preparation of a range of tetraaryl-substituted bicyclo[4.2.0]octa-1,5,7-trienes using a one-pot procedure starting from terminal aryl alkynes and catalysed by a rhodium(i) complex is reported. This synthesis proceeds by a reaction sequence involving head-to-tail homocoupling of the terminal alkyne and zipper annulation of the resulting gem-enyne. The rhodium catalyst employed is notable for the incorporation of a flexible NHC-based pincer ligand, which is suggested to interconvert between mer- and fac-coordination modes to fulfil the orthogonal mechanistic demands of the two transformations. Evidence for this interesting auto-tandem action of the catalyst is provided by reactions of the precatalyst with model substrates, corroborating proposed intermediates in both component cycles, and norbornadiene, which reversibly captures the change in pincer ligand coordination mode, along with a DFT-based computational analysis.

17.
Dalton Trans ; 49(7): 2087-2101, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32031194

ABSTRACT

The synthesis of macrocyclic variants of commonly employed phosphine-based pincer (pro)ligands derived from meta-xylene (PCP-14) and resorcinol (POCOP-14) is described, where the P-donors are trans-substituted with a tetradecamethylene linker. The former was accomplished using a seven-step asymmetric procedure involving (-)-cis-1-amino-2-indanol as a chiral auxiliary and ring-closing olefin metathesis. A related, but non-diastereoselective route was employed for the latter, which consequently necessitated chromatographic separation from the cis-substituted by-product. The proligands are readily metalated and homologous series of MI(CO) and MIIICl2(CO) derivatives (M = Rh, Ir) have been isolated and fully characterised in solution and the solid state. Metal hydride complexes are generated during the synthesis of the former and have been characterised in situ using NMR spectroscopy.

18.
Dalton Trans ; 49(7): 2077-2086, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31912067

ABSTRACT

The synthesis of macrocyclic variants of commonly employed phosphine-based pincer ligands derived from lutidine (PNP-14) and 2,6-dihydroxypyridine (PONOP-14) is described, where the P-donors are trans-substituted with a tetradecamethylene linker. This was accomplished using an eight-step procedure involving borane protection, ring-closing olefin metathesis, chromatographic separation from the cis-substituted diastereomers, and borane deprotection. The rhodium coordination chemistry of these ligands has been explored, aided by the facile synthesis of 2,2'-biphenyl (biph) adducts [Rh(PNP-14)(biph)][BArF4] and [Rh(PONOP-14)(biph)][BArF4] (ArF = 3,5-(CF3)2C6H3). Subsequent hydrogenolysis enabled generation of dihydrogen, ethylene and carbonyl derivatives; notably the ν(CO) bands of the carbonyl complexes provide a means to compare the donor properties of the new pincer ligands with established acyclic congeners.

19.
Eur J Inorg Chem ; 2019(33): 3791-3798, 2019 Sep 08.
Article in English | MEDLINE | ID: mdl-31598095

ABSTRACT

Metal carbonyls are commonly employed probes for quantifying the donor properties of monodentate ligands. With a view to extending this methodology to mer-tridentate "pincer" ligands, the spectroscopic properties [ν(CO), δ 13C, 1 J RhC] of rhodium(I) and rhodium(III) carbonyl complexes of the form [Rh(pincer)(CO)][BArF 4] and [Rh(pincer)Cl2(CO)][BArF 4] have been critically analysed for four pyridyl-based pincer ligands, with two flanking oxazoline (NNN), phosphine (PNP), or N-heterocyclic carbene (CNC) donors. Our investigations indicate that the carbonyl bands of the rhodium(I) complexes are the most diagnostic, with frequencies discernibly decreasing in the order NNN > PNP > CNC. To gain deeper insight, a DFT-based energy decomposition analysis was performed and identified important bonding differences associated with the conformation of the pincer backbone, which clouds straightforward interpretation of the experimental IR data. A correlation between the difference in carbonyl stretching frequencies Δν(CO) and calculated thermodynamics of the RhI/RhIII redox pairs was identified and could prove to be a useful mechanistic tool.

20.
Angew Chem Int Ed Engl ; 58(43): 15295-15298, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31513331

ABSTRACT

The synthesis of two well-defined rhodium(I) complexes of nitrous oxide (N2 O) is reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature, enabling comprehensive structural interrogation by 15 N NMR and IR spectroscopy, and single-crystal X-ray diffraction. These methods evidence coordination of N2 O through the terminal nitrogen atom in a linear fashion and are supplemented by a computational energy decomposition analysis, which provides further insights into the nature of the Rh-N2 O interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...