Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 1(4): 398-414, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-26344340

ABSTRACT

2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

2.
Vaccine ; 28(13): 2565-72, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20117262

ABSTRACT

BACKGROUND: Development of vaccines against highly pathogenic avian influenza virus H5N1 subtypes posing a pandemic threat remains a priority. Limitations in manufacturing capacity and production time of conventional inactivated vaccines highlight the need for additional approaches. METHODS: We conducted two double-blind, placebo-controlled phase 1 studies involving a total of 103 healthy adults who received two intramuscular injections of Vaxfectin-adjuvanted plasmid DNA vaccine or placebo 21 days apart. Vaccine cohorts received either a monovalent vaccine containing an A/Vietnam/1203/04 H5 hemagglutinin-encoding plasmid or a trivalent vaccine with plasmids encoding H5, NP, and M2 proteins in doses from 0.1 to 1mg of DNA/injection. RESULTS: All doses were well tolerated without vaccine-related serious adverse events or discontinuations. In the monovalent cohorts, hemagglutination inhibition (HI) titers of > or =40 and 4-fold rises from baseline were achieved in 47-67% of subjects and H5-specific T-cell responses in 75-100%. Trivalent cohorts had lower HI response rates (< or = 20%), but 72% of subjects achieved T-cell and/or antibody responses to one or more antigens. CONCLUSIONS: Vaxfectin-adjuvanted monovalent H5 DNA vaccines were well tolerated and induced HI response rates and titers in the reported range of inactivated protein-based H5 vaccines, suggesting that adjuvanted DNA vaccines with rapid vaccine production could be useful for pandemic control.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/adverse effects , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adult , Antibodies, Viral/blood , Double-Blind Method , Female , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunization, Secondary/methods , Influenza A virus/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Injections, Intramuscular , Male , Nucleocapsid Proteins , Phosphatidylethanolamines/administration & dosage , Phosphatidylethanolamines/adverse effects , Placebos/administration & dosage , Plasmids , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , T-Lymphocytes/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
3.
Hum Gene Ther ; 18(8): 763-71, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17705698

ABSTRACT

The feasibility of a linear expression cassette (LEC)-based influenza A DNA vaccine was demonstrated in mice, using a lethal dose (LD90) of a mouse-adapted A/Hong Kong/8/68 (H3N2) influenza strain. LECs expressing hemagglutinin (HA) from either the homotypic H3N2 or the heterotypic H1N1 (A/Puerto Rico/8/34) influenza virus were produced by polymerase chain reaction and either phosphodiester- or phosphorothioate-modified oligonucleotide primers. Survival subsequent to lethal viral challenge was used as a primary end point; weight loss was the secondary end point. Survival and weight loss data showed that protection can be achieved in mice with 50 microg of phosphate-buffered saline-formulated LEC DNA or 2 microg of Vaxfectin-formulated LEC DNA. Survival correlated with neutralizing antibody titers (hemagglutination inhibition, HAI); titers obtained after vaccination with LEC were equivalent to those obtained with HA (H3N2) plasmid DNA control. Vaccination with heterotypic H1 HA-LEC DNA provided no protection against viral challenge.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Polymerase Chain Reaction , Vaccines, DNA/immunology , Animals , Cell Line , Dogs , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Rabbits , Turkeys
4.
Appl Environ Microbiol ; 70(4): 2429-36, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15066841

ABSTRACT

Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 10(6) to 10(10) members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/metabolism , Catalysis , Environmental Microbiology , Gene Library , Molecular Sequence Data , Nitriles/chemistry , Nitriles/metabolism , Phylogeny , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...