Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 13(11): 1651-1665, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35549000

ABSTRACT

As neurons age, protein homeostasis becomes less efficient, resulting in misfolding and aggregation. Chaperone proteins perform vital functions in the maintenance of cellular proteostasis, and chaperone-based therapies that promote sequestration of toxic aggregates may prove useful in blocking the development of neurodegenerative disease. We previously demonstrated that proSAAS, a small secreted neuronal protein, exhibits potent chaperone activity against protein aggregation in vitro and blocks the cytotoxic effects of amyloid and synuclein oligomers in cell culture systems. We now examine whether cytoplasmic expression of proSAAS results in interactions with protein aggregates in this cellular compartment. We report that expression of proSAAS within the cytoplasm generates dense, membraneless 2 µm proSAAS spheres which progressively fuse to form larger spheres, suggesting liquid droplet-like properties. ProSAAS spheres selectively accumulate a C-terminally truncated fluorescently tagged form of TDP-43, initiating its cellular redistribution; these TDP-43-containing spheres also exhibit dynamic fusion. Efficient encapsulation of TDP-43 into proSAAS spheres is driven by its C-terminal prion-like domain; spheres must be formed for sequestration to occur. Three proSAAS sequences, a predicted coiled-coil, a conserved region (residues 158-169), and the positively charged sequence 181-185, are all required for proSAAS to form spheres able to encapsulate TDP-43 aggregates. Substitution of lysines for arginines in the 181-185 sequence results in nuclear translocation of proSAAS and encapsulation of nuclear-localized TDP-43216-414. As a functional output, we demonstrate that proSAAS expression results in cytoprotection against full-length TDP-43 toxicity in yeast. We conclude that proSAAS can act as a functional holdase for TDP-43 via this phase-separation property, representing a cytoprotectant whose unusual biochemical properties can potentially be exploited in the design of therapeutic molecules.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Molecular Chaperones/genetics , Protein Aggregates
2.
PLoS One ; 16(1): e0241161, 2021.
Article in English | MEDLINE | ID: mdl-33497415

ABSTRACT

Alpha-synuclein pre-formed fibrils (PFFs) represent a promising model system for the study of cellular processes underlying cell-to-cell transmission of alpha-synuclein proteopathic aggregates. However, the ability to differentiate the fate of internalized PFFs from those which remain in the extracellular environment remains limited due to the propensity for PFFs to adhere to the cell surface. Removal of PFFs requires repeated washing and/or specific quenching of extracellular fluorescent PFF signals. In this paper we present a new method for analyzing the fate of internalized alpha-synuclein. We inserted a tobacco etch virus (TEV) protease cleavage site between alpha-synuclein and green fluorescent protein and subjected cells to brief treatment with TEV protease after incubation with tagged PFFs. As the TEV protease is highly specific, non-toxic, and active under physiological conditions, protection from TEV cleavage can be used to distinguish internalized PFFs from those which remain attached to the cell surface. Using this experimental paradigm, downstream intracellular events can be analyzed via live or fixed cell microscopy as well as by Western blotting. We suggest that this method will be useful for understanding the fate of PFFs after endocytosis under various experimental manipulations.


Subject(s)
Biological Assay , Neurons/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line , Endopeptidases/genetics , Endopeptidases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , alpha-Synuclein/genetics
3.
Front Aging Neurosci ; 12: 268, 2020.
Article in English | MEDLINE | ID: mdl-33192447

ABSTRACT

Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.

4.
Dis Model Mech ; 12(2)2019 02 07.
Article in English | MEDLINE | ID: mdl-30635270

ABSTRACT

Familial amyotrophic lateral sclerosis (ALS) is an incurable, late-onset motor neuron disease, linked strongly to various causative genetic loci. ALS8 codes for a missense mutation, P56S, in VAMP-associated protein B (VAPB) that causes the protein to misfold and form cellular aggregates. Uncovering genes and mechanisms that affect aggregation dynamics would greatly help increase our understanding of the disease and lead to potential therapeutics. We developed a quantitative high-throughput Drosophila S2R+ cell-based kinetic assay coupled with fluorescent microscopy to score for genes involved in the modulation of aggregates of the fly orthologue, VAP(P58S), fused with GFP. A targeted RNA interference screen against 900 genes identified 150 hits that modify aggregation, including the ALS loci Sod1 and TDP43 (also known as TBPH), as well as genes belonging to the mTOR pathway. Further, a system to measure the extent of VAP(P58S) aggregation in the Drosophila larval brain was developed in order to validate the hits from the cell-based screen. In the larval brain, we find that reduction of SOD1 levels or decreased mTOR signalling reduces aggregation, presumably by increasing the levels of cellular reactive oxygen species (ROS). The mechanism of aggregate clearance is, primarily, proteasomal degradation, which appears to be triggered by an increase in ROS. We have thus uncovered an interesting interplay between SOD1, ROS and mTOR signalling that regulates the dynamics of VAP aggregation. Mechanistic processes underlying such cellular regulatory networks will lead to better understanding of the initiation and progression of ALS.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Membrane Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Reactive Oxygen Species/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagy , Brain/metabolism , Cells, Cultured , Disease Models, Animal , Larva/metabolism , Models, Biological , Oxidative Stress , Proteolysis , RNA, Double-Stranded/metabolism , Reverse Genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...