Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Am Chem Soc ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041457

ABSTRACT

We recently reported on small-molecule inhibitors of the GroES/GroEL chaperone system as potential antibiotics against Escherichia coli and the ESKAPE pathogens but were unable to establish GroES/GroEL as the cellular target, leading to cell death. In this study, using two of our most potent bis-sulfonamido-2-phenylbenzoxazoles (PBZs), we established the binding site of the PBZ molecules using cryo-EM and found that GroEL was the cellular target responsible for the mode of action. Cryo-EM revealed that PBZ1587 binds at the GroEL ring-ring interface (RRI). A cellular reporter assay confirmed that PBZ1587 engaged GroEL in cells, but cellular rescue experiments showed potential off-target effects. This prompted us to explore a closely related analogue, PBZ1038, which is also bound to the RRI. Biochemical characterization showed potent inhibition of Gram-negative chaperonins but much lower potency of chaperonin from a Gram-positive organism, Enterococcus faecium. A cellular reporter assay showed that PBZ1038 also engaged GroEL in cells and that the cytotoxic phenotype could be rescued by a chromosomal copy of E. faecium GroEL/GroES or by expressing a recalcitrant RRI mutant. These data argue that PBZ1038's antimicrobial action is exerted through inhibition of GroES/GroEL, validating this chaperone system as an antibiotic target.

2.
Mol Metab ; 81: 101888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307385

ABSTRACT

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.


Subject(s)
Histones , Lactoylglutathione Lyase , Histones/metabolism , Chromatin/metabolism , Glycolysis , Lactoylglutathione Lyase/metabolism , Lactic Acid/metabolism , Macrophages/metabolism
3.
Biochemistry ; 63(3): 251-263, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38243804

ABSTRACT

The 13 Hsp70 proteins in humans act on unique sets of substrates with diversity often being attributed to J-domain-containing protein (Hsp40 or JDP) cofactors. We were therefore surprised to find drastically different binding affinities for Hsp70-peptide substrates, leading us to probe substrate specificity among the 8 canonical Hsp70s from humans. We used peptide arrays to characterize Hsp70 binding and then mined these data using machine learning to develop an algorithm for isoform-specific prediction of Hsp70 binding sequences. The results of this algorithm revealed recognition patterns not predicted based on local sequence alignments. We then showed that none of the human isoforms can complement heat-shocked DnaK knockout Escherichia coli cells. However, chimeric Hsp70s consisting of the human nucleotide-binding domain and the substrate-binding domain of DnaK complement during heat shock, providing further evidence in vivo of the divergent function of the Hsp70 substrate-binding domains. We also demonstrated that the differences in heat shock complementation among the chimeras are not due to loss of DnaJ binding. Although we do not exclude JDPs as additional specificity factors, our data demonstrate substrate specificity among the Hsp70s, which has important implications for inhibitor development in cancer and neurodegeneration.


Subject(s)
Escherichia coli Proteins , Heat-Shock Proteins , Humans , Heat-Shock Proteins/metabolism , Escherichia coli Proteins/chemistry , Binding Sites , HSP70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/metabolism , Protein Binding
4.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873172

ABSTRACT

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.

5.
Redox Biol ; 65: 102839, 2023 09.
Article in English | MEDLINE | ID: mdl-37573837

ABSTRACT

p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.


Subject(s)
Carrier Proteins , NF-E2-Related Factor 2 , Humans , Carrier Proteins/metabolism , Cullin Proteins/metabolism , Feedback , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
6.
Mol Cells ; 46(3): 165-175, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36994475

ABSTRACT

The transcription factor Nrf2 was originally identified as a master regulator of redox homeostasis, as it governs the expression of a battery of genes involved in mitigating oxidative and electrophilic stress. However, the central role of Nrf2 in dictating multiple facets of the cellular stress response has defined the Nrf2 pathway as a general mediator of cell survival. Recent studies have indicated that Nrf2 regulates the expression of genes controlling ferroptosis, an ironand lipid peroxidation-dependent form of cell death. While Nrf2 was initially thought to have anti-ferroptotic function primarily through regulation of the antioxidant response, accumulating evidence has indicated that Nrf2 also exerts anti-ferroptotic effects via regulation of key aspects of iron and lipid metabolism. In this review, we will explore the emerging role of Nrf2 in mediating iron homeostasis and lipid peroxidation, where several Nrf2 target genes have been identified that encode critical proteins involved in these pathways. A better understanding of the mechanistic relationship between Nrf2 and ferroptosis, including how genetic and/or pharmacological manipulation of Nrf2 affect the ferroptotic response, should facilitate the development of new therapies that can be used to treat ferroptosis-associated diseases.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Cell Death , Iron/metabolism
7.
Sci Adv ; 9(5): eade9585, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36724221

ABSTRACT

Enhancing the intracellular labile iron pool (LIP) represents a powerful, yet untapped strategy for driving ferroptotic death of cancer cells. Here, we show that NRF2 maintains iron homeostasis by controlling HERC2 (E3 ubiquitin ligase for NCOA4 and FBXL5) and VAMP8 (mediates autophagosome-lysosome fusion). NFE2L2/NRF2 knockout cells have low HERC2 expression, leading to a simultaneous increase in ferritin and NCOA4 and recruitment of apoferritin into the autophagosome. NFE2L2/NRF2 knockout cells also have low VAMP8 expression, which leads to ferritinophagy blockage. Therefore, deletion of NFE2L2/NRF2 results in apoferritin accumulation in the autophagosome, an elevated LIP, and enhanced sensitivity to ferroptosis. Concordantly, NRF2 levels correlate with HERC2 and VAMP8 in human ovarian cancer tissues, as well as ferroptosis resistance in a panel of ovarian cancer cell lines. Last, the feasibility of inhibiting NRF2 to increase the LIP and kill cancer cells via ferroptosis was demonstrated in preclinical models, signifying the impact of NRF2 inhibition in cancer treatment.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Humans , Female , Ferroptosis/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Apoferritins , Iron/metabolism , Homeostasis , Ubiquitin-Protein Ligases/metabolism , R-SNARE Proteins/metabolism
8.
J Med Chem ; 66(1): 677-694, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36516003

ABSTRACT

A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms. The top compounds were all tested against a panel of cancer cell lines and disappointingly showed little effect. The top-performing compound, 8, was retested using a series of endoplasmic reticulum (ER) stress-inducing agents and found to synergize with these agents. Finally, 8 was tested in a spheroid tumor model and found to be more potent than in two-dimensional models. The optimized Grp78 inhibitors are the first reported isoform-selective small-molecule-competitive inhibitors of an Hsp70-substrate interaction.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Humans , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/pharmacology , Molecular Chaperones/chemistry , HSP70 Heat-Shock Proteins , Endoplasmic Reticulum Stress , Protein Isoforms
9.
Redox Biol ; 59: 102570, 2023 02.
Article in English | MEDLINE | ID: mdl-36495698

ABSTRACT

BACKGROUND AND AIMS: Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD. APPROACH AND RESULTS: Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation. Mechanistically, HFD suppressed autophagosome biogenesis through AMPK- and AKT-mediated mTOR activation and decreased ATG7, resulting in KEAP1 stabilization and decreased NRF2 levels in mouse liver. Furthermore, ATG7 is required for HFD-induced NRF2 downregulation, as ATG7 deletion in Cre-inducible ATG7 knockout mice decreased NRF2 levels and enhanced ferroptosis, which was not further exacerbated by HFD. This finding was recapitulated in mouse hepatocytes, which showed a similar phenotype upon treatment with saturated fatty acids (SFAs) but not monounsaturated fatty acids (MUFAs). Finally, NRF2 activation blocked fatty acid (FA)-mediated NRF2 downregulation, lipid peroxidation, and ferroptosis. Importantly, the HFD-induced alterations were also observed in human fatty liver tissue samples. CONCLUSIONS: HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Autophagosomes/metabolism , Fatty Acids/metabolism , Obesity/metabolism , Cell Death , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism
10.
J Med Chem ; 66(1): 913-933, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36577036

ABSTRACT

A pulldown using a biotinylated natural product of interest in the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.


Subject(s)
Transcription Factors , Withanolides , Male , Humans , Nuclear Proteins , Protein Domains , Cell Cycle Proteins
11.
Autophagy ; 19(5): 1562-1581, 2023 05.
Article in English | MEDLINE | ID: mdl-36300783

ABSTRACT

Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.


Subject(s)
Immediate-Early Proteins , Macroautophagy , Animals , Mice , Autophagy/physiology , Valosin Containing Protein/metabolism , Fibroblasts/metabolism , Proteins/metabolism , Ubiquitin/metabolism , Lysosomes/metabolism , Protein Tyrosine Phosphatases/metabolism , Immediate-Early Proteins/metabolism
12.
Bioorg Med Chem ; 75: 117072, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36356534

ABSTRACT

While many studies have established the importance of protein homeostasis in tumor progression, little effort has been made to examine the therapeutic potential of targeting the HSP60 chaperonin system. In healthy cells, HSP60 is localized to the mitochondrial matrix; however, emerging evidence indicates HSP60 can be over-expressed and mis-localized to the cytosol of cancer cells, which is hypothesized to promote tumor cell survival and proliferation. This opens a potential avenue to selectively target the aberrant HSP60 in the cytosol as a chemotherapeutic strategy. In the present work, we examined a series of bis-aryl-α,ß-unsaturated ketone (ABK) HSP60 inhibitors for their ability to selectively target cancerous vs non-cancerous colon and intestine cells. We found that lead analogs inhibited migration and clonogenicity of cancer cells, with cytotoxicity correlating with the level of aberrant HSP60 in the cytosol.

13.
Mol Oncol ; 16(8): 1714-1727, 2022 04.
Article in English | MEDLINE | ID: mdl-35184380

ABSTRACT

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is often highly expressed in non-small cell lung cancer (NSCLC). Through its target genes, NRF2 enhances cancer progression and chemo/radioresistance, leading to a poorer prognosis in patients with high NRF2 expression. In this study, we identified CHM-like Rab escort protein (CHML; encoding Rep2) as an NRF2 target gene with an antioxidant response element (ARE) in its promoter region (-1622 to -1612). Analysis of patient data curated by The Cancer Genome Atlas (TCGA) and Oncomine databases revealed that CHML mRNA expression was elevated in lung adenocarcinoma (LUAD) patient tumor tissues and correlated with decreased patient survival. Immunohistochemistry (IHC) analysis of normal versus lung cancer patient tissues revealed that Rep2 protein levels were higher in lung tumors compared with normal tissue, which also correlated with increased levels of NRF2. Importantly, siRNA-mediated knockdown of CHML/Rep2 in A549 NSCLC cells decreased their ability to proliferate. Mechanistically, Rep2 mediates mTOR function, as loss of Rep2 inhibited, whereas overexpression enhanced, mTOR translocation and activation at the lysosome. Our findings identify a novel NRF2-Rep2-dependent regulation of mTOR function.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Fatty Acids, Unsaturated , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
FASEB J ; 36(3): e22198, 2022 03.
Article in English | MEDLINE | ID: mdl-35199390

ABSTRACT

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Subject(s)
Allosteric Site , Escherichia coli Proteins/chemistry , Heat-Shock Proteins/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Chaperonin 10/chemistry , Chaperonin 10/genetics , Chaperonin 10/metabolism , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
15.
J Med Chem ; 64(21): 15727-15746, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34676755

ABSTRACT

Increased protein synthesis is a requirement for malignant growth, and as a result, translation has become a pharmaceutical target for cancer. The initiation of cap-dependent translation is enzymatically driven by the eukaryotic initiation factor (eIF)4A, an ATP-powered DEAD-box RNA-helicase that unwinds the messenger RNA secondary structure upstream of the start codon, enabling translation of downstream genes. A screen for inhibitors of eIF4A ATPase activity produced an intriguing hit that, surprisingly, was not ATP-competitive. A medicinal chemistry campaign produced the novel eIF4A inhibitor 28, which decreased BJAB Burkitt lymphoma cell viability. Biochemical and cellular studies, molecular docking, and functional assays uncovered that 28 is an RNA-competitive, ATP-uncompetitive inhibitor that engages a novel pocket in the RNA groove of eIF4A and inhibits unwinding activity by interfering with proper RNA binding and suppressing ATP hydrolysis. Inhibition of eIF4A through this unique mechanism may offer new strategies for targeting this promising intersection point of many oncogenic pathways.


Subject(s)
Drug Discovery , Eukaryotic Initiation Factor-4F/antagonists & inhibitors , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Humans , Nucleic Acid Conformation , RNA, Messenger/chemistry
16.
Anal Chem ; 93(44): 14722-14729, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34705424

ABSTRACT

Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and measuring biomolecular interactions. Native MS usually requires the resolution of different charge states produced by electrospray ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolution. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational deconvolution of CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate its ability to improve the CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natural lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide a valuable new computational tool for CD-MS data analysis.


Subject(s)
Proteins , Spectrometry, Mass, Electrospray Ionization , Algorithms , Ions , Software
17.
ACS Omega ; 6(38): 24432-24443, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604625

ABSTRACT

eIF4A1 is an ATP-dependent RNA helicase whose overexpression and activity have been tightly linked to oncogenesis in a number of malignancies. An understanding of the complex kinetics and conformational changes of this translational enzyme is necessary to map out all targetable binding sites and develop novel, chemically tractable inhibitors. We herein present a comprehensive quantitative analysis of eIF4A1 conformational changes using protein-ligand docking, homology modeling, and extended molecular dynamics simulations. Through this, we report the discovery of a novel, biochemically active phenyl-piperazine pharmacophore, which is predicted to target the ATP-binding site and may serve as the starting point for medicinal chemistry optimization efforts. This is the first such report of an ATP-competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.

18.
RSC Chem Biol ; 2(1): 181-186, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-34458780

ABSTRACT

The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin.

19.
Semin Cancer Biol ; 76: 61-73, 2021 11.
Article in English | MEDLINE | ID: mdl-34102289

ABSTRACT

NRF2 is a basic leucine zipper (bZip) transcription factor that is the master regulator of redox homeostasis. Under basal conditions, the cellular level of NRF2 is low due to a posttranslational regulation by the ubiquitin proteasome system (UPS). But, when an organism is challenged with oxidative or xenobiotic stress, the NRF2 pathway is activated by inhibition of the E3 ubiquitin ligase complex that normally marks NRF2 for destruction. For several decades, researchers have searched for molecules that can intentionally activate NRF2, as this was shown to be a means to prevent certain diseases, at least in animal models. In the present era, there are many compounds known to activate the NRF2 pathway including natural products and synthetic compounds, covalent and non-covalent compounds, and others. However, it was also revealed that like many protective pathways, the NRF2 pathway has a dark side. Just as NRF2 can protect normal cells from damage, it can protect malignant cells from damage. As cells transform, they are exposed to many stressors and aberrant upregulation of NRF2 can facilitate transformation and it can help cancer cells to grow, to spread, and to resist treatment. For this reason, researchers are also interested in the discovery and development of NRF2 inhibitors. In the present review, we will begin with a general discussion of NRF2 structure and function, we will discuss the latest in NRF2 non-covalent activators, and we will discuss the current state of NRF2 inhibitors.


Subject(s)
Molecular Targeted Therapy/methods , NF-E2-Related Factor 2/antagonists & inhibitors , Neoplasms , Animals , Humans
20.
Bioorg Med Chem ; 40: 116129, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33971488

ABSTRACT

Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Chaperonin 10/antagonists & inhibitors , Chaperonin 60/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Salicylanilides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Chaperonin 10/metabolism , Chaperonin 60/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Salicylanilides/chemical synthesis , Salicylanilides/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...