Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2312587121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381785

ABSTRACT

To ensure a robust immune response to pathogens without risking immunopathology, the kinetics and amplitude of inflammatory gene expression in macrophages need to be exquisitely well controlled. There is a growing appreciation for stress-responsive membraneless organelles (MLOs) regulating various steps of eukaryotic gene expression in response to extrinsic cues. Here, we implicate the nuclear paraspeckle, a highly ordered biomolecular condensate that nucleates on the Neat1 lncRNA, in tuning innate immune gene expression in murine macrophages. In response to a variety of innate agonists, macrophage paraspeckles rapidly aggregate (0.5 h poststimulation) and disaggregate (2 h poststimulation). Paraspeckle maintenance and aggregation require active transcription and MAPK signaling, whereas paraspeckle disaggregation requires degradation of Neat1 via the nuclear RNA exosome. In response to lipopolysaccharide treatment, Neat1 KO macrophages fail to properly express a large cohort of proinflammatory cytokines, chemokines, and antimicrobial mediators. Consequently, Neat1 KO macrophages cannot control replication of Salmonella enterica serovar Typhimurium or vesicular stomatitis virus. These findings highlight a prominent role for MLOs in orchestrating the macrophage response to pathogens and support a model whereby dynamic assembly and disassembly of paraspeckles reorganizes the nuclear landscape to enable inflammatory gene expression following innate stimuli.


Subject(s)
Paraspeckles , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Macrophages/metabolism
2.
Cell Rep ; 43(3): 113816, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38393946

ABSTRACT

Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA-binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis reveals that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon-stimulated genes in macrophages. Using genetic and biochemical assays, we discover that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define a role for an SR protein in activating transcription and reveal an RBP-chromatin network that orchestrates macrophage antiviral gene expression.


Subject(s)
Interferon Type I , Humans , Transcription, Genetic , Promoter Regions, Genetic/genetics , Macrophages , RNA Splicing Factors , Alternative Splicing/genetics , Serine-Arginine Splicing Factors/genetics
3.
ACS Appl Mater Interfaces ; 14(36): 40724-40737, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36018830

ABSTRACT

Pseudomonas aeruginosa is the leading nosocomial and community-acquired pathogen causing a plethora of acute and chronic infections. The Centers for Disease Control and Prevention has designated multidrug-resistant isolates of P. aeruginosa as a serious threat. A novel delivery vehicle capable of specifically targeting  P. aeruginosa, and encapsulating antimicrobials, may address the challenges associated with these infections. We have developed hetero-multivalent targeted liposomes functionalized with host cell glycans to increase the delivery of antibiotics to the site of infection. Previously, we have demonstrated that compared with monovalent liposomes, these hetero-multivalent liposomes bind with higher affinity to P. aeruginosa. Here, compared with nontargeted liposomes, we have shown that greater numbers of targeted liposomes are found in the circulation, as well as at the site of P. aeruginosa (PAO1) infection in the thighs of CD-1 mice. No significant difference was found in the uptake of targeted, nontargeted, and PEGylated liposomes by J774.A1 macrophages. Ciprofloxacin-loaded liposomes were formulated and characterized for size, encapsulation, loading, and drug release. In vitro antimicrobial efficacy was assessed using CLSI broth microdilution assays and time-kill kinetics. Lastly, PAO1-inoculated mice treated with ciprofloxacin-loaded, hetero-multivalent targeted liposomes survived longer than mice treated with ciprofloxacin-loaded, monovalent targeted, or nontargeted liposomes and free ciprofloxacin. Thus, liposomes functionalized with host cell glycans target P. aeruginosa resulting in increased retention of the liposomes in the circulation, accumulation at the site of infection, and increased survival time in a mouse surgical site infection model. Consequently, this formulation strategy may improve outcomes in patients infected with P. aeruginosa.


Subject(s)
Anti-Infective Agents , Pseudomonas Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Ciprofloxacin , Liposomes , Mice , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa
SELECTION OF CITATIONS
SEARCH DETAIL
...