Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 11(32): 6987-98, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19652833

ABSTRACT

A series of four anhydrous group 13 chloride salts has been studied by (35/37)Cl solid-state NMR spectroscopy and complementary quantum chemical calculations. Due to the large (35/37)Cl quadrupolar interactions in these salts, a high magnetic field (21.1 T) and the variable-offset QCPMG technique was used to obtain full chlorine central transition (m = -1/2 <--> 1/2) NMR spectra. Analyses of the NMR spectra of the synthetically important Lewis acid trichlorides of aluminium, gallium, and indium, as well as gallium dichloride, allowed for characterisation of the chlorine electric field gradient (EFG) tensors and, in three cases, the chlorine chemical shift (CS) tensors. The quadrupolar interaction was found to dominate the central transition chlorine NMR spectrum in all cases, with chlorine-35 quadrupolar coupling constants (C(Q)) ranging in magnitude from 22.45 +/- 2.00 to 40.44 +/- 2.00 MHz, and the spectral breadths ranging from approximately 1.0 to 2.5 MHz. For the trichloride salt of gallium, it was confirmed that the terminal chlorine sites exhibit larger chlorine C(Q) values than do the bridging chlorines. The isotropic chemical shifts range from 150 +/- 100 to 375 +/- 100 ppm while the largest CS tensor span is 500 +/- 200 ppm, for InCl(3). The chlorine chemical shift was found to increase with increasing M-Cl distance in all cases. Quantum chemical calculations of the EFG and magnetic shielding tensors, performed using the gauge-including projector-augmented-wave (GIPAW) method as implemented in the CASTEP program, were found to be in excellent agreement with the experimentally determined values, reproducing C(Q)((35)Cl) to within 7% in all cases. The agreement between experiment and theory substantiates the accuracy of the NMR parameters. Solid-state NMR spectra of the cation species (aluminium-27, gallium-69/71 and indium-113/115) were also collected, and the EFG and CS parameters were determined in some cases. The study demonstrates the utility of multinuclear solid-state magnetic resonance studies of half-integer spin quadrupolar nuclei in ionic systems when the central transition is broadened greatly by the quadrupolar interaction, and in particular contributes to our understanding of the relationship between solid-state structure and chlorine NMR interaction tensors.

2.
Phys Chem Chem Phys ; 9(47): 6219-30, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18046471

ABSTRACT

A series of six L-amino acid hydrochloride salts has been studied by 35/37Cl solid-state NMR spectroscopy (at 11.75 and 21.1 T) and complementary quantum chemical calculations. Analyses of NMR spectra acquired under static and magic-angle-spinning conditions for the six hydrochloride salts, those of aspartic acid, alanine, cysteine, histidine, methionine and threonine, allowed the extraction of information regarding the chlorine electric field gradient (EFG) and chemical shift tensors, including their relative orientation. Both tensors are found to be highly dependent on the local environment, with chlorine-35 quadrupolar coupling constants (CQ) ranging from -7.1 to 4.41 MHz and chemical shift tensor spans ranging from 60 to 100 ppm; the value of CQ for aspartic acid hydrochloride is the largest in magnitude observed to date for an organic hydrochloride salt. Quantum chemical calculations performed on cluster models of the chloride ion environment demonstrated agreement between experiment and theory, reproducing CQ to within 18%. In addition, the accuracy of the calculated values of the NMR parameters as a function of the quality of the input structure was explored. Selected X-ray structures were determined (L-Asp HCl; L-Thr HCl) or re-determined (L-Cys HCl.H2O) to demonstrate the benefits of having accurate crystal structures for calculations. The self-consistent charge field perturbation model was also employed and was found to improve the accuracy of calculated quadrupolar coupling constants, demonstrating the impact of the neighbouring ions on the EFG tensor of the central chloride ion. Taken together, the present work contributes to an improved understanding of the factors influencing 35/37Cl NMR interaction tensors in organic hydrochlorides.


Subject(s)
Amino Acids/chemistry , Chlorine/chemistry , Hydrochloric Acid/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/standards , Quantum Theory , Hydrogen-Ion Concentration , Isotopes , Models, Chemical , Molecular Structure , Reference Standards , X-Ray Diffraction
3.
J Phys Chem A ; 111(50): 12859-63, 2007 Dec 20.
Article in English | MEDLINE | ID: mdl-18020321

ABSTRACT

Solid-state potassium-39 NMR spectra of two potassium complexes of crown-ether-based organic ligands (1.KI and 2) have been acquired at 11.75 and 21.1 T and interpreted to provide information on the 39K quadrupolar and chemical shift tensors. The analyses reveal a large potassium chemical shift tensor span of 75+/-20 ppm for 1.KI. This appears to be the first such measurement for potassium in an organic complex, thereby suggesting the utility of potassium chemical shift tensors for characterizing organic and biomolecular K+ binding environments. Compound 2 exhibits a cation-pi interaction between K+ and a phenyl group, and therefore, the 39K NMR tensors obtained for this compound must be partly representative of this interaction. Analyses of potassium-39 spin-rotation data for gaseous 39K19F and 39K35Cl available from molecular beam experiments performed by Cederberg and co-workers reveal the largest potassium CS tensor spans known to date, 84.39 and 141 ppm, respectively. Collectively, the results obtained highlight the potential of ultrahigh-field potassium-39 solid-state NMR spectroscopy and, in particular, the wide range of the anisotropy of the potassium CS tensor when organic and diatomic systems are considered.


Subject(s)
Potassium/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...