Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB Bioadv ; 2(1): 33-48, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32123855

ABSTRACT

The CFTR chloride channel is regulated by phosphorylation at PKA and PKC consensus sites within its regulatory region (R-region) through a mechanism, which is still not completely understood. We used a split-CFTR construct expressing the N-term-TMD1-NBD1 (Front Half; FH), TMD2-NBD2-C-Term (Back Half; BH), and the R-region as separate polypeptides (Split-R) in BHK cells, to investigate in situ how different phosphorylation conditions affect the R-region interactions with other parts of the protein. In proximity ligation assays, we studied the formation of complexes between the R-region and each half of the Split-CFTR. We found that at basal conditions, the density of complexes formed between the R-region and both halves of the split channel were equal. PKC stimulation alone had no effect, whereas PKA stimulation induced the formation of more complexes between the R-region and both halves compared to basal conditions. Moreover, PKC + PKA stimulation further enhanced the formation of FH-R complexes by 40% from PKA level. In cells expressing the Split-R with the two inhibitory PKC sites on the R-region inactivated (SR-S641A/T682A), density of FH-R complexes was much higher than in Split-R WT expressing cells after PKC or PKC + PKA stimulation. No differences were observed for BH-R complexes measured at all phosphorylation conditions. Since full-length CFTR channels display large functional responses to PKC + PKA in WT and S641A/T682A mutant, we conclude that FH-R interactions are important for CFTR function. Inactivation of consensus PKC site serine 686 (S686A) significantly reduced the basal BH-R interaction and prevented the PKC enhancing effect on CFTR function and FH-R interaction. The phospho-mimetic mutation (S686D) restored basal BH-R interaction and the PKC enhancing effect on CFTR function with enhanced FH-R interaction. As the channel function is mainly stimulated by PKA phosphorylation of the R-region, and this response is known to be enhanced by PKC phosphorylation, our data support a model in which the regulation of CFTR activation results from increased interactions of the R-region with the N-term-TMD1-NBD1. Also, serine S686 was found to be critical for the PKC enhancing effect which requires a permissive BH-R interaction at basal level and increased FH-R interaction after PKC + PKA phosphorylation.

2.
Front Pharmacol ; 8: 151, 2017.
Article in English | MEDLINE | ID: mdl-28386229

ABSTRACT

The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.

3.
Am J Physiol Cell Physiol ; 307(2): C195-207, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24898584

ABSTRACT

Vasoactive intestinal peptide (VIP), a neuropeptide, controls multiple functions in exocrine tissues, including inflammation, and relaxation of airway and vascular smooth muscles, and regulates CFTR-dependent secretion, which contributes to mucus hydration and local innate defense of the lung. We had previously reported that VIP stimulates the VPAC1 receptor, PKCϵ signaling cascade, and increases CFTR stability and function at the apical membrane of airway epithelial cells by reducing its internalization rate. Moreover, prolonged VIP stimulation corrects the molecular defects associated with F508del, the most common CFTR mutation responsible for the genetic disease cystic fibrosis. In the present study, we have examined the impact of the absence of VIP on CFTR maturation, cellular localization, and function in vivo using VIP knockout mice. We have conducted pathological assessments and detected signs of lung and intestinal disease. Immunodetection methods have shown that the absence of VIP results in CFTR intracellular retention despite normal expression and maturation levels. A subsequent loss of CFTR-dependent chloride current was measured in functional assays with Ussing chamber analysis of the small intestine ex vivo, creating a cystic fibrosis-like condition. Interestingly, intraperitoneal administration of VIP corrected tissue abnormalities, close to the wild-type phenotype, as well as associated defects in the vital CFTR protein. The results show in vivo a primary role for VIP chronic exposure in CFTR membrane stability and function and confirm in vitro data.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/physiology , Vasoactive Intestinal Peptide/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Expression Regulation/physiology , Intestine, Small/pathology , Lung/pathology , Mice , Mice, Knockout , Respiratory Mucosa/cytology , Trachea/cytology , Vasoactive Intestinal Peptide/genetics
4.
Am J Physiol Cell Physiol ; 307(1): C107-19, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24788249

ABSTRACT

Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na(+)/H(+) exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.


Subject(s)
Bronchi/enzymology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cytoskeletal Proteins/metabolism , Epithelial Cells/enzymology , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinase C-epsilon/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Sodium-Hydrogen Exchangers/metabolism , Vasoactive Intestinal Peptide/metabolism , Adaptor Proteins, Signal Transducing , Bronchi/cytology , Carrier Proteins/metabolism , Cell Line , Golgi Matrix Proteins , Humans , Membrane Transport Proteins , Phosphoproteins/genetics , Phosphorylation , Protein Binding , RNA Interference , Signal Transduction , Sodium-Hydrogen Exchangers/genetics , Time Factors , Transfection
5.
Am J Physiol Cell Physiol ; 301(1): C53-65, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21411725

ABSTRACT

The most common cystic fibrosis causing mutation F508del induces early degradation and reduced trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. In the human nasal epithelial cells JME/CF15, we previously reported that vasoactive intestinal peptide (VIP) exposure corrects trafficking and membrane insertion of functional F508del-CFTR channels at 37°C. Correction of trafficking was PKA dependent, whereas enhanced membrane localization involved PKC. In the present study, we have identified PKCε as the isoform involved in VIP-dependent F508del-CFTR membrane insertion. Iodide effluxes were used to monitor the presence of VIP-rescued functional F508del-CFTR channels at the surface of JME/CF15 cells maintained at 37°C. Iodide efflux peaks measured in response to stimulation with forskolin were insensitive to PKC α, ß, γ, δ, ζ inhibitors. In contrast, efflux peaks were completely inhibited by pretreatment with the PKCε inhibitor peptide EAVSLKPT with an IC(50) of 4.9 µM or by PKCε small interfering RNA (siRNA). Immunostaining and confocal microscopy confirmed that membrane localization of F508del-CFTR induced by VIP was abolished in the presence of EAVSLKPT but not with other isoform inhibitors. In recombinant baby hamster kidney cells, endogenously expressing PKCε but no VIP receptor, wild-type, and F508del-CFTR sensitivity to cpt-cAMP stimulation was increased by PMA treatment. Biotinylation assays and immunoblots confirmed that PMA (0.5-2 h) induced a greater than threefold increase in membrane CFTR, whereas forskolin had no effect. The PMA effect was abolished by specifically inhibiting PKCε (EAVSLKPT IC(50) = 5.7 µM) but not other PKC isoforms. Taken together, these results indicate that stimulating PKCε by VIP or PMA increases membrane insertion and activity of WT- and F508del-CFTR.


Subject(s)
Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Protein Kinase C-epsilon/metabolism , Vasoactive Intestinal Peptide/pharmacology , Animals , Biotinylation , Cell Line , Cricetinae , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Humans , Immunoblotting , Iodides/metabolism , Microscopy, Confocal , Mutation , Polymerase Chain Reaction , Protein Isoforms , Protein Kinase C-epsilon/antagonists & inhibitors , RNA Interference , RNA, Small Interfering , Receptors, Vasoactive Intestinal Peptide/genetics , Receptors, Vasoactive Intestinal Peptide/metabolism , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...