Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 695: 108633, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33075302

ABSTRACT

A linked-function theory for allostery allows for a differentiation between those protein-ligand interactions that contribute the most to ligand binding and those protein-ligand interactions that contribute to the allosteric mechanism. This potential distinction is the basis for analogue studies used to determine which chemical moieties on the allosteric effector contribute to allostery. Although less recognized, the same separation of functions is possible for substrate-enzyme interactions. When evaluating allosteric regulation in human liver pyruvate kinase, the use of a range of monovalent cations (K+, NH4+, Rb+, Cs+, cyclohexylammonium+ and Tris+) altered substrate (phosphoenolpyruvate; PEP) affinity, but maintained similar allosteric responses to the allosteric activator, fructose-1,6-bisphosphate (Fru-1,6-BP). Because crystal structures indicate that the active site monovalent cation interacts directly with the phosphate moiety of the bound PEP substrate, we questioned if the phosphate moiety might contribute to substrate binding, but not to the allosteric mechanism. Here, we demonstrate that the binding of oxalate, a non-phosphorylated substrate/product analogue, is allosterically enhanced by Fru-1,6-BP. That observation is consistent with the concept that the phosphate moiety of PEP is not required for the allosteric function, even though that moiety likely contributes to determining substrate affinity.


Subject(s)
Fructosediphosphates/chemistry , Liver/enzymology , Phosphoenolpyruvate/chemistry , Pyruvate Kinase/chemistry , Allosteric Regulation , Fructosediphosphates/metabolism , Humans , Phosphoenolpyruvate/metabolism , Pyruvate Kinase/metabolism
2.
J Virol ; 92(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29491161

ABSTRACT

Five matching sets of nonmalignant liver tissues and hepatocellular carcinoma (HCC) samples from individuals chronically infected with hepatitis B virus (HBV) were examined. The HBV genomic sequences were determined by using overlapping PCR amplicons covering the entire viral genome. Four pairs of tissues were infected with HBV genotype C, while one pair was infected with HBV genotype B. HBV replication markers were found in all tissues. In the majority of HCC samples, the levels of pregenomic/precore RNA (pgRNA) and covalently closed circular DNA (cccDNA) were lower than those in liver tissue counterparts. Regardless of the presence of HBV replication markers, (i) integrant-derived HBV RNAs (id-RNAs) were found in all tissues by reverse transcription-PCR (RT-PCR) analysis and were considerably abundant or predominant in 6/10 tissue samples (2 liver and 4 HCC samples), (ii) RNAs that were polyadenylated using the cryptic HBV polyadenylation signal and therefore could be produced by HBV replication or derived from integrated HBV DNA were found in 5/10 samples (3 liver and 2 HCC samples) and were considerably abundant species in 3/10 tissues (2 livers and 1 HCC), and (iii) cccDNA-transcribed RNAs polyadenylated near position 1931 were not abundant in 7/10 tissues (2 liver and 5 HCC samples) and were predominant in only two liver samples. Subsequent RNA sequencing analysis of selected liver/HCC samples also showed relative abundance of id-RNAs in most of the examined tissues. Our findings suggesting that id-RNAs could represent a significant source of HBV envelope proteins, which is independent of viral replication, are discussed in the context of the possible contribution of id-RNAs to the HBV life cycle.IMPORTANCE The relative abundance of integrant-derived HBV RNAs (id-RNAs) in chronically infected tissues suggest that id-RNAs coding for the envelope proteins may facilitate the production of a considerable fraction of surface antigens (HBsAg) in infected cells bearing HBV integrants. If the same cells support HBV replication, then a significant fraction of assembled HBV virions could bear id-RNA-derived HBsAg as a major component of their envelopes. Therefore, the infectivity of these HBV virions and their ability to facilitate virus cell-to-cell spread could be determined mainly by the properties of id-RNA-derived envelope proteins and not by the properties of replication-derived HBsAg. These interpretations suggest that id-RNAs may play a role in the maintenance of chronic HBV infection and therefore contribute to the HBV life cycle. Furthermore, the production of HBsAg from id-RNAs independently of viral replication may explain at least in part why treatment with interferon or nucleos(t)ides in most cases fails to achieve a loss of serum HBsAg.


Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , RNA, Viral/genetics , Viral Envelope Proteins/genetics , Virus Integration/genetics , Adult , Base Sequence , Carcinoma, Hepatocellular/virology , Cells, Cultured , DNA, Circular/genetics , DNA, Viral/genetics , Female , Genome, Viral/genetics , Hepatitis B, Chronic/virology , Humans , Liver/virology , Liver Neoplasms/virology , Male , Middle Aged , Sequence Analysis, RNA , Viral Load , Virus Replication/genetics
3.
Zootaxa ; 4072(5): 559-68, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-27395945

ABSTRACT

Milnesium swansoni sp. nov. is a new species of Eutardigrada described from the tree canopy in eastern Kansas, USA. This species within the order Apochela, family Milnesiidae, genus Milnesium is distinguished by its smooth cuticle, narrow buccal tube, four peribuccal lamellae, primary claws without accessory points, and a secondary claw configuration of [3-3]-[3-3]. The buccal tube appears to be only half the width of the nominal species Milnesium tardigradum for animals of similar body length. The species adds to the available data for the phylum, and raises questions concerning species distribution.


Subject(s)
Tardigrada/anatomy & histology , Tardigrada/classification , Animals , Ecosystem , Kansas , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...