Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1288, 2017.
Article in English | MEDLINE | ID: mdl-28798755

ABSTRACT

Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the "RAS/RT ratio." Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil.

2.
Appl Environ Microbiol ; 81(8): 2841-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25681183

ABSTRACT

This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and "Candidatus Koribacter" was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops.


Subject(s)
Microbiota , Pennisetum/growth & development , Pennisetum/microbiology , Rhizosphere , Soil Microbiology , Africa , Agriculture , Molecular Sequence Data , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Senegal , Sequence Analysis, DNA
3.
ISME J ; 6(1): 213-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21753801

ABSTRACT

Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a (13)C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of (12)CO(2) and (13)CO(2) were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum.


Subject(s)
Bacteria/classification , Oligochaeta/physiology , Soil Microbiology , Agriculture , Animals , Ecosystem , Madagascar , Molecular Sequence Data , Triticum
4.
Environ Sci Technol ; 41(12): 4361-6, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17626437

ABSTRACT

Pollution of waters resulting from phosphorus (P) runoff from agricultural land receiving long-term manure application is one of the most serious threats to water quality in many regions of the world. Of various approaches to alleviate the problem, reducing P surplus on animal farms through optimizing P intake and minimizing P excretion in manure offers a great opportunity. Here, we present a fecal P test method that has the potential to identify over-feeding of P in dairy cattle. Previous research has suggested that water-extractable P in dairy cow feces closely reflects dietary P changes and may indicate the animal's P status (adequate vs excessive). However, the notion was somewhat confounded when a subsequent study found other factors (pH and Ca content as well as sample handling method) also affecting P extractability in water. In the present work, we hypothesize that the impact of those factors on P extractability can be overcome by selecting dilute acid solutions to replace deionized water as the extractant. Using samples from 25 commercial dairy farms, we tested an array of acid solutions (including HCI, citric acid, and acetic acid) and found that 0.1% HCI is the most suitable extractant. Inorganic P (P(i)) released in 0.1% HCl closely reflected dietary P changes among the farms (R2 = 0.69) and was independent of pH, Ca, or sample handling method. Knowledge of P metabolism and partitioning in dairy cows and our experimental data suggest that excess P intake by the animal leads to greater amounts of bioavailable but unabsorbed P, which is excreted in feces. Its relative magnitude may be estimated by measuring P(i) extractable in 0.1% HCl. This novel and simple fecal P test could potentially be used as an indicator of the animal's P supply utilization status and thus serve as a screening tool for the presence of P over-feeding on dairy farms.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Feces/chemistry , Phosphorus/analysis , Acetic Acid/chemistry , Animal Feed , Animals , Calcium/chemistry , Cattle , Citric Acid/chemistry , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...