Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 126(42): 7591-7597, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36223070

ABSTRACT

We report on W-band EPR and quantum chemical investigation of novel organic tetraradicals with negative axial zero-field splitting (ZFS) parameter D. These belong to the class of quintet 1,3,5-tribromophenylene-2,4-dinitrenes bearing different substituents in position 6 of the benzene ring (1b, N3; 1c, F; 1d, CN; 1e; Cl; 1f, Br). Analysis of the W-band EPR spectrum of dinitrene 1c reveals its large negative ZFS parameter D = -0.27 cm-1. Quantum chemical calculations show that negative D gradually grows in the row of 1c(F) < 1b(N3) < 1d(CN) < 1e(Cl) < 1f(Br) dinitrenes due to decreasing of the through-space distance between the nitrene units and neighboring bromine atoms. Shorter steric N···Br distance results in the stronger contribution of the spin-orbit coupling (SOC) to the total ZFS. The sign of D depends on the interplay of three factors: (i) the angle θ between the "easy" z-axes of the dipolar spin-spin (DSS) and spin-orbit (DSOC) interaction tensors, (ii) the ratio of DSOC/DSS values, and (iii) the rhombicity parameters ESS/DSS and ESOC/DSOC. The study demonstrates in which cases organic quintet tetraradicals may have negative ZFS owing to the presence of heavy atoms at appropriate sites nearby the nitrene units and, thus, possess the bistability property as single-molecule magnets.

2.
Magn Reson Chem ; 60(8): 829-835, 2022 08.
Article in English | MEDLINE | ID: mdl-35319115

ABSTRACT

The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter DS = -0.1031 cm-1 among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing.


Subject(s)
Quantum Theory , Computer Simulation , Electron Spin Resonance Spectroscopy/methods , Photolysis , Powders
3.
Chemistry ; 27(4): 1258-1269, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-32578914

ABSTRACT

Among all C-, N-, and O-centered polyradicals, high-spin nitrenes possess the largest magnetic anisotropy and are of considerable interest as multi-level molecular spin systems for exploration of organic molecular magnetism and quantum information processing. Although the first representatives of quintet and septet nitrenes were obtained almost 50 years ago, the experimental and theoretical studies of these highly reactive species became possible only recently, owing to new achievements in molecular spectroscopy and computational chemistry. Meanwhile, dozens of various quintet dinitrenes and septet trinitrenes were successfully characterized by IR, UV/Vis, and EPR spectroscopy, thus providing important information about the electronic structure, magnetic properties and reactivity of these compounds.

4.
Angew Chem Int Ed Engl ; 58(37): 12994-12998, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31265166

ABSTRACT

The septet ground state trinitrenes 1,3,5-trichloro-2,4,6-trinitrenobenzene and 1,3,5-tribromo-2,4,6-trinitrenobenzene were isolated in inert (Ar, Ne, and Xe) as well as reactive matrices (H2 , O2 , and H2 O) at cryogenic temperatures. These trinitrenes were obtained in high yields by UV photolysis of the corresponding triazides and characterized by IR and UV/Vis spectroscopy. The trinitrenes, despite bearing six unpaired electrons, are remarkably unreactive towards molecular oxygen and hydrogen and are persistent in water ice up to 160 K where the water matrix starts to sublime off.

5.
Magn Reson Chem ; 57(8): 472-478, 2019 08.
Article in English | MEDLINE | ID: mdl-30997697

ABSTRACT

Complex multicomponent, multispin molecular system, consisting of a septet trinitrene, two quintet dinitrenes, and three triplet mononitrenes, was obtained by the photolysis of 2,4,6-triazido-3-cyano-5-fluoropyridine in solid argon. To identify these paramagnetic products, electron paramagnetic resonance spectroscopy in combination with line-shape spectral simulations and density functional theory calculations was used. The products of the photolysis was found to be triplet 2,4-diazido-3-cyano-5-fluoropyridyl-6-nitrene (DT  = 1.000 cm-1 , ET  = 0), triplet 2,4-diazido-3-cyano-5-fluoropyridyl-2-nitrene (DT  = 1.043 cm-1 , ET  = 0), triplet 2,6-diazido-3-cyano-5-fluoropyridyl-4-nitrene (DT  = 1.128 cm-1 , ET  = 0 cm-1 ), quintet 4-azido-3-cyano-5-fluoropyridyl-2,6-dinitrene (DQ  = 0.211 cm-1 , EQ  = 0.0532 cm-1 ), quintet 2-azido-3-cyano-5-fluoropyridyl-4,6-dinitrene (DQ  = 0.208 cm-1 , EQ  = 0.0386 cm-1 ), and septet 3-cyano-5-fluoropyridyl-2,4,6-trinitrene (DS  = -0.1017 cm-1 , ES  = -0.0042 cm-1 ) in a 38:4:7:22:14:4 ratio, respectively.

6.
J Phys Chem A ; 122(45): 8931-8937, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30359039

ABSTRACT

Previously unknown the steric heavy atom effect on magnetic anisotropy parameters of triplet phenyl nitrenes is reported. The heavy bromine atom effect is revealed by W-band EPR and theoretical investigations of triplet 2,4,6-tribromophenyl nitrenes bearing different substituents in positions 3 and 5 of the phenyl ring (1a, H/H; 1b, CN/CN; 1c, N3/F; 1d, N3/N3; 1e, Cl/Cl; 1f, Br/Br). The zero-field splitting parameters of nitrenes 1a ( D = 0.9930 cm-1, E = 0.0261 cm-1), 1c ( D = 1.244 cm-1, E = 0.030 cm-1), and 1d ( D = 1.369 cm-1, E = 0.093 cm-1), generated by the photolysis of the corresponding azides in frozen methylcyclohexane solution at 5 K, were determined from the W-band EPR spectra. To clarify the origin of considerable differences in the experimental D values of nitrenes 1a, 1c, and 1d, extensive DFT and CASSCF calculations of these nitrenes as well as of model nitrenes 1b, 1e, and 1f were performed. The calculations show that all nitrenes have nearly the same magnitudes of the spin-spin interactions ( DSS ∼ 1 cm-1), but drastically differ in the spin-orbit coupling parameter (from DSOC = 0.087 cm-1 for 1a to DSOC = 0.765 cm-1 for 1f). Comprehensive analysis of various computational data showed that the magnitude of DSOC of nitrenes 1a-f is the function of the N···Br distance between the nitrene nitrogen and the neighboring bromine atoms. The more bulky substituents are located in positions 3 and 5 of nitrenes 1a-1f, the smaller the N--Br distance and the larger DSOC. These features indicate that the heavy atom effect on magnetic anisotropy of triplet phenyl nitrenes originates from the through-space rather than through-bond electronic interactions between the bromine atoms and the nitrene unit.

7.
Magn Reson Chem ; 55(2): 99-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27477821

ABSTRACT

13 C and 15 N NMR spectra of high-energy 2,4,6-triazidopyridine-3,5-dicarbonitrile, 2,3,5,6-tetraazidopyridine-4-carbonitrile and 3,4,5,6-tetraazidopyridine-2-carbonitrile are reported. The assignment of signals in the spectra was performed on the basis of density functional theory calculations. The molecular geometries were optimized using the M06-2X functional with the 6-311+G(d,p) basis set. The magnetic shielding tensors were calculated by the gauge-independent atomic orbital method with the Tao-Perdew-Staroverov-Scuseria hybrid functional known as TPSSh. In all the calculations, a polarizable continuum model was used to simulate solvent effects. This approach provided accurate predictions of the 13 C and 15 N chemical shifts for all the three compounds despite complications arising due to non-coplanar arrangement of the azido groups in the molecules. It was found that the 15 N chemical shifts of the Nα atoms in the azido groups of 2,4,6-triazidopyridines correlate with the 13 C chemical shifts of the carbon atoms attached to these azido groups. Copyright © 2016 John Wiley & Sons, Ltd.

8.
Molecules ; 20(10): 19142-71, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26506330

ABSTRACT

Aromatic polyazides are widely used as starting materials in organic synthesis and photochemical studies, as well as photoresists in microelectronics and as cross-linking agents in polymer chemistry. Some aromatic polyazides possess high antitumor activity, while many others are of considerable interest as high-energy materials and precursors of high-spin nitrenes and C3N4 carbon nitride nanomaterials. The use of aromatic polyazides in click-reactions may be a new promising direction in the design of various supramolecular systems possessing interesting chemical, physical and biological properties. This review is devoted to the synthesis, properties and applications of six-membered aromatic compounds containing three and more azido groups in the ring.


Subject(s)
Azides/chemical synthesis , Click Chemistry , Heterocyclic Compounds/chemical synthesis , Nitriles/chemistry , Phosphines/chemical synthesis , Photolysis
9.
J Phys Chem A ; 119(11): 2413-9, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25350487

ABSTRACT

The heavy atom effect on the magnetic anisotropy of septet trinitrenes is reported. Septet 1-bromo-3,5-dichloro-2,4,6-trinitrenobenzene (S-1) was generated in a solid argon matrix by ultraviolet irradiation of 1,3,5-triazido-2-bromo-4,6-dichlorobenzene. This trinitrene displays an electron spin resonance (ESR) spectrum that drastically differs from ESR spectra of all previously studied septet trinitrenes. The zero-field splitting (ZFS) parameters, derived from the experimental spectrum, show the parameter |D| = 0.1237 cm(-1) and the unprecedentedly large ratio of E/D = 0.262 that is close to the rhombic limit E/D = 1/3 for high-spin molecules. The CASCI (based on state-averaged CASSCF) and DFT methods were applied to calculate the ZFS tensor focusing on the heavy (bromine) atom effects on the spin-orbit term. These calculations show that the multiconfigurational ab initio formalism and the CASCI method are the most successful for accurate predictions of the spin-orbit term in the ZFS tensor of high-spin nitrenes containing heavy bromine atoms. Due to the presence of the bromine atom in S-1, the contribution of the spin-orbit term to the total parameter D is dominant and responsible for the unusual orientation of the easy Z-axis lying in the molecular plane perpendicular to the C-Br bond. As a result, the principal values D(XX), D(YY), and D(ZZ) of the total tensor D̂(Tot) have such magnitudes and signs for which the ratio E/D is close to the rhombic limit, and the total parameter D is large in magnitude and positive in sign.

10.
J Org Chem ; 79(13): 6047-53, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24905080

ABSTRACT

The key intermediates of decomposition of high-energy 2,4,6-triazidopyrimidine and its 5-chloro-substituted derivative, the detonation of which is used for preparation of carbon nitrides, were investigated using electron paramagnetic resonance (EPR) spectroscopy in combination with quantum chemical calculations. The decomposition of the triazides was carried out photochemically, using the matrix isolation technique. The photodecomposition of both triazides with 254 nm light in argon matrices at 5 K occurred selectively to subsequently give the corresponding triplet 4,6-diazido-2-nitrenopyrimidines, quintet 4-azido-2,6-dinitrenopyrimidines, and septet 2,4,6-trinitrenopyrimidines. The latter were photochemically unstable and decomposed to form triplet nitrenes NCN and NNC as well as triplet carbenes NCCCN, HCCN, and HCCCCN. The results obtained provide important information about exchange interactions in high-spin nitrenes with the pyrimidine ring and the mechanism of the formation of carbon nitrides during thermolysis of 2,4,6-triazidopyrimidine.

11.
Magn Reson Chem ; 51(9): 562-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23877844

ABSTRACT

2,4,6-Triazido-s-triazine, 2,4,6-triazidopyrimidine and six different 2,4,6-triazidopyridines were studied by (15)N NMR spectroscopy. The assignment of signals in the spectra was performed using the gauge-independent atomic orbital (GIAO)-Tao-Perdew-Staroverov-Scuseria exchange-correlation functional (TPSS)h/6-311+G(d,p) calculations on the M06-2X/6-311+G(d,p) optimized molecular geometries. The Truhlar and coworkers' continuum solvation model called SMD was applied to treat solvent effects. With this approach, the root mean square error in estimations of the (15)N chemical shifts for the azido groups was just 1.9 ppm. It was shown that the different reactivity of the α- and γ-azido groups in pyridines correlates well with the chemical shifts of the Nα signals of these groups. Of two nonequivalent azido groups of azines, the azido group with the most shielded Nα signal is the most electron-deficient and reactive toward electron-rich reagents. By contrast, the azido group of azines with the most deshielded Nα signal is the most reactive toward electron-poor reagents.


Subject(s)
Azides/chemistry , Pyrimidines/chemistry , Triazines/chemistry , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Nitrogen Isotopes , Reference Standards
12.
Beilstein J Org Chem ; 9: 733-42, 2013.
Article in English | MEDLINE | ID: mdl-23766785

ABSTRACT

In contrast to theoretical expectations, the photolysis of 2,4,6-triazido-3-chloro-5-fluoropyridine in argon at 5 K gives rise to EPR peaks of just two triplet mononitrenes, two quintet dinitrenes, and a septet trinitrene. EPR spectral simulations in combination with DFT calculations show that observable nitrenes can be assigned to triplet 2,4-diazido-3-chloro-5-fluoropyridyl-6-nitrene (D T = 1.026 cm(-1), E T = 0), triplet 2,6-diazido-3-chloro-5-fluoropyridyl-4-nitrene (D T = 1.122 cm(-1), E T = 0.0018 cm(-1)), quintet 4-azido-3-chloro-5-fluoropyridyl-2,6-dinitrene (D Q = 0.215 cm(-1), E Q = 0.0545 cm(-1)), quintet 2-azido-3-chloro-5-fluoropyridyl-4,6-dinitrene (D Q = 0.209 cm(-1), E Q = 0.039 cm(-1)) and septet 3-chloro-5-fluoropyridyl-2,4,6-trinitrene (D S = -0.1021 cm(-1), E S = -0.0034 cm(-1)). Preferential photodissociation of the azido groups located in ortho-positions to the fluorine atom of pyridines is associated with strong π-conjugation of these groups with the pyridine ring. On photoexcitation, such azido groups are more efficiently involved in reorganization of the molecular electronic system and more easily adopt geometries of the locally excited predissociation states.

13.
J Chem Phys ; 138(20): 204317, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23742485

ABSTRACT

The fine-structure (FS) parameters D of a series of D3h symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D3h symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D = -0.0957 cm(-1) and E = 0 cm(-1) is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z1-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has [line]D[line] = 0.092 cm(-1) and E = 0 cm(-1). DFT calculations reveal that, unlike C2v symmetric septet trinitrenes, D3h symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D[^]SS and the spin-orbit coupling tensor D[^]SOC and, as a result, have negative signs for both the DSS and DSOC values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the DSOC term.

14.
J Chem Phys ; 137(6): 064308, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22897274

ABSTRACT

High-spin organic molecules with dominant spin-orbit contribution to magnetic anisotropy are reported. Quintet 4-azido-3,5-dibromopyridyl-2,6-dinitrene (Q-1), quintet 2-azido-3,5-dibromopyridyl-4,6-dinitrene (Q-2), and septet 3,5-dibromopyridyl-2,4,6-trinitrene (S-1) were generated in solid argon matrices by ultraviolet irradiation of 2,4,6-triazido-3,5-dibromopyridine. The zero-field splitting (ZFS) parameters, derived from electron spin resonance spectra, show unprecedentedly large magnitudes of the parameters D: ∣D(Q1)∣ = 0.289, ∣D(Q2)∣ = 0.373, and ∣D(S1)∣ = 0.297 cm(-1). The experimental ZFS parameters were successfully reproduced by density functional theory calculations, confirming that magnetic anisotropy of high-spin organic molecules can considerably be enhanced by the "heavy atom effect." In bromine-containing high-spin nitrenes, the spin-orbit term is dominant and governs both the magnitude and the sign of magnetic anisotropy. The largest negative value of D among septet trinitrenes is predicted for 1,3,5-trinitrenobenzene bearing three heavy atoms (Br) in positions 2, 4, and 6 of the benzene ring.

15.
Chemphyschem ; 13(11): 2721-8, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22693143

ABSTRACT

The UV (λ>305 nm) photolysis of triazide 3 in 2-methyl-tetrahydrofuran glass at 7 K selectively produces triplet mononitrene 4 (g=2.003, D(T)=0.92 cm(-1), E(T)=0 cm(-1)), quintet dinitrene 6 (g=2.003, D(Q)=0.204 cm(-1), E(Q)=0.035 cm(-1)), and septet trinitrene 8 (g=2.003, D(S)=-0.0904 cm(-1), E(S) =-0.0102 cm(-1)). After 45 min of irradiation, the major products are dinitrene 6 and trinitrene 8 in a ratio of ∼1:2, respectively. These nitrenes are formed as mixtures of rotational isomers each of which has slightly different magnetic parameters D and E. The best agreement between the line-shape spectral simulations and the experimental electron paramagnetic resonance (EPR) spectrum is obtained with the line-broadening parameters Γ(E(Q))=180 MHz for dinitrene 6 and Γ(E(S))=330 MHz for trinitrene 8. According to these line-broadening parameters, the variations of the angles Θ in rotational isomers of 6 and 8 are expected to be about ±1 and ±3°, respectively. Theoretical estimations of the magnetic parameters obtained from PBE/DZ(COSMO)//UB3LYP/6-311+G(d,p) calculations overestimate the E and D values by 1 and 8 %, respectively. Despite the large distances between the nitrene units and the extended π systems, the zero field splitting (zfs) parameters D are found to be close to those in quintet dinitrenes and septet trinitrenes, where the nitrene centers are attached to the same aryl ring. The large D values of branched septet nitrenes are due to strong negative one-center spin-spin interactions in combination with weak positive two-center spin-spin interactions, as predicted by theoretical considerations.

16.
J Phys Chem A ; 115(30): 8419-25, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21682299

ABSTRACT

Photolysis of 2,6-bis(4'-azidophenyl)-4-phenylpyridine in 2-methyltetrahydrofuran (2MTHF) glass at 7 K leads to quintet 2,6-bis(4'-nitrenophenyl)-4-phenylpyridine as a mixture of rotational isomers. The electron spin resonance (ESR) spectrum of this mixture of rotamers shows a considerable broadening of many transitions in the range of 0-5000 G and cannot be reproduced by computer simulations solely based on the tuning of the spin Hamiltonian parameters g, D(Q), and E(Q) alone or on predictions of DFT calculations. The best modeling of the experimental ESR spectrum is obtained only when the large line-broadening parameter of Γ(E(Q)) = 1200 MHz along with the spin Hamiltonian g = 2.003, D(Q) = 0.154 cm(-1), and E(Q) = 0.050 cm(-1) is used in the spectral simulations. The most accurate theoretical estimations of the magnetic parameters of the dinitrene in a 2MTHF glass are obtained from the B3LYP/6-311+G(d,p)+PBE/DZ/COSMO calculations of the spin-spin coupling parameters D(SS) and E(SS). Such calculations overestimate the E(Q) and D(Q) values of the dinitrene just by 1% and 10%, respectively, demonstrating that contributions of the spin-orbit coupling parameters D(SOC) and E(SOC) to the total D(Q) and E(Q) values are negligibly small. The research shows that ESR studies of polynuclear high-spin nitrenes, obtained by photolysis of rotational isomers of the starting azides, can only be successful if large E(Q) strain effects are taken into account in the spectral simulations.


Subject(s)
Pyridines/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Molecular Structure , Photolysis , Stereoisomerism
17.
J Chem Phys ; 133(6): 064101, 2010 Aug 14.
Article in English | MEDLINE | ID: mdl-20707555

ABSTRACT

This work presents a detailed evaluation of the performance of density functional theory (DFT) for the prediction of zero-field splittings (ZFSs) in high-spin nitrenes. A number of well experimentally characterized triplet mononitrenes, quartet nitrenoradicals, quintet dinitrenes, and septet trinitrenes have been considered. Several DFT-based approaches for the prediction of ZFSs have been compared. It is shown that the unrestricted Kohn-Sham and the Pederson-Khanna approaches are the most successful for the estimation of the direct spin-spin (SS) interaction and the spin-orbit coupling (SOC) parts, respectively, to the final ZFS parameters. The most accurate theoretical predictions (within 10%) are achieved by using the PBE density functional in combination with the DZ, EPR-II, and TZV basis sets. For high-spin nitrenes constituted from light atoms, the contribution of the SOC part to ZFS parameters is quite small (7%-12%). By contrast, for chlorine-substituted septet trinitrenes, the contribution of the SOC part is small only to D value but, in the case of E value, it is as large as the SS part and has opposite sign. Due to this partial cancellation of two different contributions, SS and SOC, the resulting values of E in heavy molecules are almost two times smaller than those predicted by analysis of the widely used semiempirical one-center spin-spin interaction model. The decomposition of D(SS) into n-center (n=1-4) interactions shows that the major contribution to D(SS) results from the one-center spin-spin interactions. This fact indicates that the semiempirical SS interaction model accurately predicts the ZFS parameters for all types of high-spin nitrenes with total spin S=2 and 3, if their molecules are constructed from the first-row atoms.

18.
J Org Chem ; 74(19): 7238-44, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19725551

ABSTRACT

Septet 2,4,6-trinitrenotoluene is the major paramagnetic product formed during the photolysis of 2,4,6-triazidotoluene in cryogenic matrices. This trinitrene displays different electron paramagnetic resonance (EPR) spectra in solid argon and in 2-methyltetrahydrofuran (2MTHF) glass, corresponding to septet spin states with the zero-field splitting (ZFS) parameters D(S) = -0.0938 cm(-1), E(S) = -0.0040 cm(-1) and D(S) = -0.0934 cm(-1), E(S) = -0.0015 cm(-1), respectively. Analysis of these parameters shows that the molecular and electronic structure of the septet trinitrene derived from the EPR spectrum in argon is in good agreement with the expectations from DFT calculations. The very small parameter E(S) in 2MTHF glass is explained by significant changes of the spin densities on the three nitrene units due to interactions of the nitrogen atom with surrounding 2MTHF molecules.


Subject(s)
Magnetics , Nitro Compounds/chemistry , Toluene/analogs & derivatives , Electron Spin Resonance Spectroscopy , Molecular Structure , Nitro Compounds/chemical synthesis , Photolysis , Toluene/chemical synthesis , Toluene/chemistry
19.
J Org Chem ; 73(18): 7045-51, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18710286

ABSTRACT

Septet 3,5-difluoropyridyl-2,4,6-trinitrene along with quintet 2-azido-3,5-difluoropyridyl-4,6-dinitrene, quintet 4-azido-3,5-difluoropyridyl-2,6-dinitrene, triplet 2,6-diazido-3,5-difluoropyridyl-4-nitrene, and triplet 2,4-diazido-3,5-difluoropyridyl-6-nitrene have been obtained by photolysis of 2,4,6-triazido-3,5-difluoropyridine in solid argon at 4 K. The electronic and magnetic properties of the matrix-isolated nitrenes were studied using electron paramagnetic resonance (EPR) spectroscopy in combination with density functional theory (DFT) calculations. The fine-structure parameters of the nitrenes were determined with high accuracy from computer spectral simulations. All signals in the EPR spectra of the nitrenes randomly oriented in the solid phase were unambiguously assigned on the basis of eigenfield calculations of the Zeeman energy levels and angular dependencies of resonance fields from the direction of the applied magnetic field.


Subject(s)
Imines/chemistry , Pyridines/chemistry , Computer Simulation , Electron Spin Resonance Spectroscopy/methods , Electrons , Imines/radiation effects , Magnetics , Models, Chemical , Molecular Structure , Photolysis , Pyridines/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...