Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Pharm ; 660: 124304, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38848799

ABSTRACT

Depression is one of the most common psychiatric disorders. Nanotechnology has emerged to optimize the pharmacological response. Therefore, the aim of this work was to develop and characterize liposomes and nanocapsules containing paroxetine hydrochloride and evaluate their antidepressant-like effect using the open field and tail suspension tests in mice. Liposomes and nanocapsules were prepared using the reverse-phase evaporation and nanoprecipitation methods, respectively. The particle size of the formulation ranged from 121.81 to 310.73 nm, the polydispersity index from 0.096 to 0.303, the zeta potential from -11.94 to -34.50 mV, the pH from 5.31 to 7.38, the drug content from 80.82 to 94.36 %, and the association efficiency was 98 %. Paroxetine hydrochloride showed slower release when associated with liposomes (43.82 %) compared to nanocapsules (95.59 %) after 10 h. In Vero cells, in vitro toxicity showed a concentration-dependent effect for paroxetine hydrochloride nanostructures. Both nanostructures decreased the immobility time in the TST at 2.5 mg/kg without affecting the number of crossings in the open field test, suggesting the antidepressant-like effect of paroxetine. In addition, the nanocapsules decreased the number of groomings, reinforcing the anxiolytic effect of this drug. These results suggest that the nanostructures were effective in preserving the antidepressant-like effect of paroxetine hydrochloride even at low doses.


Subject(s)
Liposomes , Nanocapsules , Paroxetine , Animals , Paroxetine/administration & dosage , Paroxetine/pharmacology , Paroxetine/chemistry , Nanocapsules/chemistry , Mice , Chlorocebus aethiops , Male , Vero Cells , Particle Size , Drug Liberation , Depression/drug therapy , Hindlimb Suspension , Antidepressive Agents/administration & dosage , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents, Second-Generation/administration & dosage , Antidepressive Agents, Second-Generation/chemistry , Antidepressive Agents, Second-Generation/pharmacology , Behavior, Animal/drug effects , Cell Survival/drug effects
2.
Genet Mol Biol ; 46(3 Suppl 1): e20230139, 2024.
Article in English | MEDLINE | ID: mdl-38197733

ABSTRACT

Alcohol Use Disorder (AUD) is a highly prevalent condition worldwide that produces a wide range of pathophysiological consequences, with a critical impact on health and social issues. Alcohol influences gene expression through epigenetic changes mainly through DNA methylation. In this sense, levels of 5-methylcytosine (5-mC), namely Global DNA methylation (GMe), which can be influenced by environmental and hormonal effects, represent a putative biological mechanism underlying alcohol effects. Our aim was to investigate the influence of AUD diagnosis and alcohol patterns (i.e., years of addiction, use in the last 30 days, and alcohol severity) on GMe levels. The sample consisted of 256 men diagnosed with AUD and 361 men without AUD. DNA samples from peripheral blood were used to assess GMe levels, measured through the levels of 5-mC using high-performance liquid chromatography. Results from multiple linear regression analysis indicated that the presence of AUD was associated with lower GMe levels (beta=-0.155, p=0.011). Other alcohol-related outcomes were not associated with DNA methylation. Our findings are consistent with the hypothesis that the impact of chronic and heavy alcohol use in GMe could be a potential mechanism mediating the multiple organ damages related to AUD.

3.
Toxicol Res (Camb) ; 13(1): tfad117, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38178995

ABSTRACT

Urbanization and agricultural activities increased environmental contaminants. Integrated analysis of water parameters and bioassays represents an essential approach to evaluating aquatic resource quality. This study aimed to assess water quality by microbiological and physicochemical parameters as well as the toxicological effects of water samples on the Ames test and Caenorhabditis elegans model. Samples were collected during (collection 1) and after (collection 2) pesticide application in the upper (S1), middle (S2), and lower (S3) sections of the Rolante River, southern Brazil. Metals were determined by GFAAS and pesticides by UPLC-MS/MS. Bioassays using the Ames test and the nematode C. elegans were performed. Levels of microbiological parameters, as well as Mn and Cu were higher than the maximum allowed limits established by legislation in collection 2 compared to collection 1. The presence of pesticide was observed in both collections; higher levels were found in collection 1. No mutagenic effect was detected. Significant inhibition of body length of C. elegans was found in collection 1 at S2 (P < 0.001) and S3 (P < 0.001) and in collection 2 at S2 (P = 0.004). Comparing the same sampling site between collections, a significant difference was found between the site of collection (F(3,6)=8.75, P = 0.01) and the time of collection (F(1,2)=28.61, P = 0.03), for the S2 and S3 samples. C. elegans model was useful for assessing surface water quality/toxicity. Results suggest that an integrated analysis for the surface water status could be beneficial for future approaches.

4.
J Trace Elem Med Biol ; 81: 127343, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38035449

ABSTRACT

BACKGROUND: Coal and coal ash present inorganic elements associated with negative impacts on environment and human health. The objective of this study was to compare the toxicity of coal and coal ash from a power plant, assess their inorganic components, and investigate the biological impacts and potential mechanisms through in vitro and in vivo testing. METHODS: Particle-Induced X-ray Emission method was used to quantify inorganic elements and the toxicity was evaluated in Caenorhabditis elegans and Daphnia magna in acute and chronic procedures. The genotoxic potential was assessed using alkaline and FPG-modified Comet assay in HepG2 cells and mutagenicity was evaluated using Salmonella/microsome assay in TA97a, TA100, and TA102 strains. RESULTS: Inorganic elements such as aluminum (Al) and chromium (Cr) were detected at higher concentrations in coal ash compared to coal. These elements were found to be associated with increased toxicity of coal ash in both Caenorhabditis elegans and Daphnia magna. Coal and coal ash did not induce gene mutations, but showed genotoxic effects in HepG2 cells, which were increased using the FPG enzyme, indicating DNA oxidative damage. CONCLUSIONS: The combined findings from bioassays using C. elegans and D. magna support the higher toxicity of coal ash, which can be attributed to its elevated levels of inorganic elements. The genotoxicity observed in HepG2 cells confirms these results. This study highlights the need for continuous monitoring in areas affected by environmental degradation caused by coal power plants. Additionally, the analysis reveals significantly higher concentrations of various inorganic elements in coal ash compared to coal, providing insight into the specific elemental composition contributing to its increased toxicity.


Subject(s)
Caenorhabditis elegans , Coal Ash , Animals , Humans , Coal Ash/toxicity , Coal Ash/analysis , Coal/toxicity , Coal/analysis , DNA Damage , Comet Assay
5.
Food Chem Toxicol ; 182: 114211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38007212

ABSTRACT

Minoxidil is regularly prescribed for alopecia, and its therapeutic potential has expanded in recent times. However, few studies have been conducted to evaluate its toxicity, and controversial findings regarding its mutagenic activities remain unsolved. This study aimed to access cytotoxic, genotoxic, and mutagenic properties of minoxidil using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, comet assay, and micronucleus test in mouse fibroblast (L929) cells and its point mutation induction potential in the Salmonella/microsome assay. Furthermore, an in vivo toxicity assessment was conducted in Caenorhabditis elegans. Minoxidil showed cytotoxicity at 2.0 mg/mL in MTT assay. Genotoxicity was observed after 3 h treatment in L929 cells using comet assay. No mutagenic effect was observed in both the micronucleus test and the Salmonella/microsome assay. The lethal dose 50 in C. elegans was determined to be 1.75 mg/mL, and a delay in body development was detected at all concentrations. In conclusion, minoxidil induces DNA damage only in early treatment, implying that this DNA damage may be repairable. This observation corroborates the absence of mutagenic activities observed in L929 cells and Salmonella typhimurium strains. However, the toxicity of minoxidil was evident in both C. elegans and L929 cells, underscoring the need for caution in its use.


Subject(s)
Caenorhabditis elegans , Minoxidil , Mice , Animals , Mutagenicity Tests , Minoxidil/toxicity , Comet Assay , DNA Damage , Micronucleus Tests , Mutagens/toxicity , Alopecia/chemically induced
6.
Expert Rev Clin Pharmacol ; 16(8): 691-701, 2023.
Article in English | MEDLINE | ID: mdl-37300458

ABSTRACT

INTRODUCTION: The use of dried blood spots (DBS) has gained interest in the field of therapeutic drug monitoring (TDM) due to its potential advantages, such as minimally invasive capillary blood collection, potential stabilization of drugs and metabolites at room or high temperatures, and lower biohazard, allowing for inexpensive storage and transportation. However, there are several drawbacks to the clinical use of DBS in TDM, mostly related to hematocrit (Hct) effects, differences between venous and capillary blood concentrations, among others, that must be evaluated during analytical and clinical method validation. AREA COVERED: This review focuses on the most recent publications on the applications of DBS sampling for TDM (2016-2022), with a special focus on the challenges presented by this alternative sampling strategy, as well as the opportunities for clinical applications. Real-life studies presenting clinical applications were reviewed. EXPERT OPINION: With the availability of method development and validation guidelines for DBS-based methods in TDM, higher levels of assay validation standardization have been achieved, expanding the clinical applications of DBS sampling in patient care. New sampling devices that overcome the limitations of classical DBS, such as the Hct effects, will further encourage the use of DBS in routine TDM.


Subject(s)
Dried Blood Spot Testing , Drug Monitoring , Humans , Drug Monitoring/methods , Dried Blood Spot Testing/methods , Hematocrit
7.
Clin Biochem ; 118: 110597, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37307936

ABSTRACT

INTRODUCTION: The use of dried capillary microsamples for clinical chemistry testing is an interesting alternative to conventional phlebotomy. Sampling devices capable to produce plasma from whole blood application are particularly useful. The aim of this study was to validate theHealthID PSDmicrosampling device for the determination of cholesterol (CHOL), high-density lipoprotein (HDL), triglycerides (TRIG), creatinine (CRE), and glycated hemoglobin (HbA1c) after collection of capillary blood. METHODS: Dried blood and plasma extracts were analyzed using modified methods in an open-channel biochemistry analyzer. The plasma volume in the extracts was corrected by the concentration of chloride (CL). Linearity, imprecision, bias, stability, and comparability to conventional samples were evaluated. RESULTS: Dried plasma assays presented total error (TE) within acceptable limits. The analytes were stable for up to 14 days at 40 °C. Predicted serum concentrations of CHO, HDL, TRI, and CRE and predicted whole blood levels of HbA1c, using dried extracts measurements, did not presented systematic or proportional differences to serum and whole blood levels. CONCLUSIONS: Dried sample extracts obtained with capillary blood applied to the HealthID PSD allowed the determination of CHO, HDL, TRI, CRE, and HbA1c, as well as the calculation of LDL level, using only 5 drops of blood. This sampling strategy can be useful for population screening programs, particularly in Developing Countries.


Subject(s)
Blood Specimen Collection , Lipoproteins, HDL , Humans , Triglycerides , Creatinine , Blood Specimen Collection/methods , Cholesterol
8.
RSC Med Chem ; 14(5): 869-879, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37252094

ABSTRACT

Four coumarin-triazole hybrids were selected from our in house library and screened for cytotoxic activity on A549 (lung cancer), HepG2 (liver cancer), J774A1 (mouse sarcoma macrophage), MCF7 (breast cancer), OVACAR (ovarian cancer), RAW (murine leukaemia macrophage), and SiHa (uterus carcinoma) and their in vitro toxicity was assessed on 3T3 (healthy fibroblasts) cell lines. SwissADME pharmacokinetic prediction was performed. Effects on ROS production, mitochondrial membrane potential, apoptosis/necrosis and DNA damage were evaluated. All of the hybrids have good pharmacokinetic predictions. Each of them showed cytotoxic activity against the MCF7 breast cancer cell line, with IC50 between 2.66 and 10.08 µM, lower than cisplatin (45.33 µM) for the same test. One can observe an order of reactivity from the most potent: LaSOM 186 > LaSOM 190 > LaSOM 185 > LaSOM 180, with a better selectivity index than the reference drug cisplatin and the precursor hymecromone, and caused cell death by apoptosis induction. Two compounds showed antioxidant activity in vitro and three disrupted the mitochondrial membrane potential. None of the hybrids caused genotoxic damage to healthy 3T3 cells. All hybrids showed potential for further optimization, mechanism elucidation, in vivo activity and toxicity tests.

9.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677622

ABSTRACT

Liposomes are among the most studied nanostructures. They are effective carriers of active substances both in the clinical field, such as delivering genes and drugs, and in the food industry, such as promoting the controlled release of bioactive substances, including food preservatives. However, toxicological screenings must be performed to ensure the safety of nanoformulations. In this study, the nematode Caenorhabditis elegans was used as an alternative model to investigate the potential in vivo toxicity of nanoliposomes encapsulating the antimicrobial peptide nisin. The effects of liposomes containing nisin, control liposomes, and free nisin were evaluated through the survival rate, lethal dose (LD50), nematode development rate, and oxidative stress status by performing mutant strain, TBARS, and ROS analyses. Due to its low toxicity, it was not possible to experimentally determine the LD50 of liposomes. The survival rates of control liposomes and nisin-loaded liposomes were 94.3 and 73.6%, respectively. The LD50 of free nisin was calculated as 0.239 mg mL-1. Free nisin at a concentration of 0.2 mg mL-1 significantly affected the development of C. elegans, which was 25% smaller than the control and liposome-treated samples. A significant increase in ROS levels was observed after exposure to the highest concentrations of liposomes and free nisin, coinciding with a significant increase in catalase levels. The treatments induced lipid peroxidation as evaluated by TBARS assay. Liposome encapsulation reduces the deleterious effect on C. elegans and can be considered a nontoxic delivery system for nisin.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Nisin , Phosphatidylcholines , Animals , Anti-Bacterial Agents/toxicity , Caenorhabditis elegans , Lecithins , Liposomes , Nisin/toxicity , Reactive Oxygen Species , Thiobarbituric Acid Reactive Substances , Drug Delivery Systems
10.
Pharmacol Rep ; 74(5): 969-981, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36076124

ABSTRACT

BACKGROUND: Vortioxetine hydrobromide (VXT), a new therapeutic option in the treatment of major depressive disorder, is a poorly soluble drug, and instability under stress conditions has been reported. The aim of the present study was to prepare VXT liposomes (VXT-Ls) with an antidepressant-like effect, to improve drug stability and reduce toxicity of the free drug. METHODS: Liposomes were prepared using the thin lipid film hydration method and properly characterized. Forced degradation studies were conducted in photolytic and oxidative conditions. The cytotoxicity was evaluated in VERO cells through MTT assay and in vivo toxicity was assessed in mice. The antidepressant-like effect in mice was confirmed using the open-field test paradigm and tail suspension test. RESULTS: The optimized VXT-Ls have multilamellar vesicles with an average size of 176.74 nm ± 2.43. The liposomal formulation increased the stability of VXT. VERO cell viability was maintained at around 40% when the VXT-Ls were tested at higher concentrations and no signs of acute toxicity were observed in mice. The antidepressant-like effect was effective, for VXT-Ls, at doses ranging from 2.5 mg/kg to 10 mg/kg, measured by the tail suspension test in mice. The non-liposomal formulation was effective at a dose of 10 mg/kg. The open field test was performed and any unspecific changes in locomotor activity were revealed. CONCLUSIONS: Liposomes seem to be a promising alternative for an oral VXT formulation at lower doses (2.5 mg/kg).


Subject(s)
Depressive Disorder, Major , Liposomes , Chlorocebus aethiops , Mice , Animals , Drug Stability , Vortioxetine , Vero Cells , Antidepressive Agents/toxicity , Lipids
11.
Mol Psychiatry ; 27(5): 2485-2491, 2022 05.
Article in English | MEDLINE | ID: mdl-35256746

ABSTRACT

Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder's neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders' etiological landscape.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Adult , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Bipolar Disorder/complications , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Comorbidity , DNA Methylation/genetics , Female , Humans , Male , Multifactorial Inheritance/genetics
12.
Drug Chem Toxicol ; 45(3): 972-984, 2022 May.
Article in English | MEDLINE | ID: mdl-32686516

ABSTRACT

Formaldehyde (FA) is a xenobiotic air pollutant and its universal distribution causes a widespread exposure to humans. This review aimed to bring updated information concerning FA toxicity in humans and animals based on in vitro and in vivo studies from 2013 to 2019. Researches were carried out in Pubmed, Scopus, and Science Direct databases to determine the effects of FA exposure on inflammation, oxidative stress and genotoxicity in experimental studies with animals (rats and mice) and humans. Besides, in vitro studies assessing FA cytotoxicity focusing on cell viability and apoptosis in different cell line cultures were reviewed. Studies with humans gave evidence regarding significant deleterious effects on health associated to chronic FA occupational exposure. Evaluations carried out in experimental studies showed toxic effects on different organs as lung, upper respiratory tract, bone marrow and brain as well as in cells. In summary, this study demonstrates that knowing the mechanisms underlying FA toxicity is essential to understand the deleterious effects that this xenobiotic causes on biological systems.


Subject(s)
Respiratory Hypersensitivity , Xenobiotics , Animals , Formaldehyde/adverse effects , Formaldehyde/toxicity , Mice , Oxidative Stress , Rats , Respiratory Hypersensitivity/metabolism , Xenobiotics/toxicity
13.
Toxicol Res (Camb) ; 10(4): 856-867, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34484677

ABSTRACT

Agriculture activities have increased the concentration of pesticides and metals in the environment. The excessive use of pesticides can generate an environmental impact and contribute to the development of human diseases. This study aimed to determine the presence of pesticides and metals in water samples collected in the Brazilian rural area in two different periods (before and after pesticide application) and to evaluate the alternative bioassays Lactuca sativa, Allium cepa, and Caenorhabditis elegans to monitoring toxicity in human drinking water samples. Eight sites in the rural area were selected and water samples were collected in two different periods of the year (before and after pesticide application). The presence of the pesticides was determinated by ultra-high performance liquid chromatography-tandem mass spectrometry and metals by inductively coupled plasma mass spectrometry. The potential toxicity of the water samples was performed with three different alternatives in vivo models (L. sativa, A. cepa, and C. elegans). Fifty-seven pesticides were analyzed and, according to the results, the most found ones were clomazone, atrazine, tebuconazole, metconazole, pyrimethanil, and carbofuran-3-hydroxide, which is a metabolic degradation product of insecticide carbofuran. The most detected metals were Cu, Cr, Mg, Fe, and Mn. The assays with L. sativa and A. cepa showed alterations in the period after pesticide application, while C. elegans presented changes in both periods compared to the same collection sites. These results indicate that bioassays, especially C. elegans, could be complementary and useful tools for monitoring the toxicity in drinking water samples.

14.
Mol Psychiatry ; 26(1): 66-69, 2021 01.
Article in English | MEDLINE | ID: mdl-33099577

ABSTRACT

There is an increasing body of knowledge on the influence of differential DNA methylation of specific genomic regions in psychiatric disorders. However, fewer studies have addressed global DNA methylation (GMe) levels. GMe is an estimative of biological functioning that is regulated by pervasive mechanisms able to capture the big picture of metabolic and environmental influences upon gene expression. In the present perspective article, we highlighted evidence for the relationships between cortisol and sex hormones and GMe in psychiatric disorders. We argue that the far-reaching effects of cortisol and sexual hormones on GMe may lie on the pathways linking stress and mental health. Further research on these endocrine-epigenetic links may help to explain the role of environmental stress as well as sex differences in the prevalence of psychiatric disorders.


Subject(s)
DNA Methylation , Gonadal Steroid Hormones/metabolism , Hydrocortisone/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Sex Characteristics
15.
J Appl Toxicol ; 40(6): 722-736, 2020 06.
Article in English | MEDLINE | ID: mdl-31960485

ABSTRACT

There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.


Subject(s)
Air Pollution/adverse effects , Biological Monitoring , Occupational Exposure/adverse effects , Traffic-Related Pollution/adverse effects , Vehicle Emissions/toxicity , Biomarkers/metabolism , Ecotoxicology , Humans , Occupational Health
16.
Toxicol Res (Camb) ; 9(6): 778-789, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447362

ABSTRACT

Formaldehyde (FA) exposure has been proven to increase the risk of asthma and cancer. This study aimed to evaluate for 28 days the FA inhalation effects on oxidative stress, inflammation process, genotoxicity, and global DNA methylation in mice as well as to investigate the potential protective effects of melatonin. For that, analyses were performed on lung, liver and kidney tissues, blood, and bone marrow. Bronchoalveolar lavage was used to measure inflammatory parameters. Lipid peroxidation (TBARS), protein carbonyl (PCO), non-protein thiols (NPSH), catalase activity (CAT), comet assay, micronuclei (MN), and global methylation were determined. The exposure to 5-ppm FA resulted in oxidative damage to the lung, presenting a significant increase in TBARS and NO levels and a decrease in NPSH levels, besides an increase in inflammatory cells recruited for bronchoalveolar lavage. Likewise, in the liver tissue, the exposure to 5-ppm FA increased TBARS and PCO levels and decreased NPSH levels. In addition, FA significantly induced DNA damage, evidenced by the increase of % tail moment and MN frequency. The pretreatment of mice exposed to FA applying melatonin improved inflammatory and oxidative damage in lung and liver tissues and attenuated MN formation in bone marrow cells. The pulmonary histological study reinforced the results observed in biochemical parameters, demonstrating the potential beneficial role of melatonin. Therefore, our results demonstrated that FA exposure with repeated doses might induce oxidative damage, inflammatory, and genotoxic effects, and melatonin minimized the toxic effects caused by FA inhalation in mice.

17.
Environ Pollut ; 256: 113406, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31662251

ABSTRACT

Toluene is a highly volatile organic solvent present in gasoline. Exposure mainly occurs by absorption via the pulmonary tract and easily reaches the central nervous system, which causes toxic effects. Toluene toxicity has been described but not well established. The present work aimed to evaluate the effects of airborne exposure to toluene, the in vivo model Caenorhabditis elegans was assessed to determine whether nematode could be used to evaluate the effects of exposure to toluene and the possible mechanisms of toxicity of the solvent. Worms at the first or fourth larval stages were exposed to toluene for 48 or 24 h, respectively, in a laboratory-developed vapor chamber at concentrations of 450, 850, 1250 and 1800 ppm. We observed increases in worm mortality and significant developmental delays that occurred in a concentration-dependent manner. An increased incidence of apoptotic events in treated germline cells was shown, which was consistent with observed reductions in reproductive capacity. In addition, toluene promoted significant behavioural changes affecting swimming movements and radial locomotion, which were associated with changes in the fluorescence intensity and morphology of GABAergic and cholinergic neurons. We conclude that toluene exposure was toxic to C. elegans, with effects produced by the induction of apoptosis and neuronal damage.


Subject(s)
Air Pollutants/toxicity , Caenorhabditis elegans/physiology , Toluene/toxicity , Air Pollutants/analysis , Animals , Apoptosis/physiology , Caenorhabditis elegans/drug effects , Germ Cells , Larva/drug effects , Locomotion/drug effects , Neurons/drug effects , Reproduction/drug effects , Toluene/analysis
18.
BMC Pharmacol Toxicol ; 20(Suppl 1): 80, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31852511

ABSTRACT

BACKGROUND: Melatonin has been described in the literature as a potent antioxidant. However, melatonin presents variable, low bioavailability and a short half-life. The use of polymeric nanoparticulated systems has been proposed for controlled release. Thus, the purpose of this study was to investigate the action of melatonin-loaded lipid-core nanocapsules (Mel-LNC) in the antioxidant system of Caenorhabditis elegans, and the possible protective effect of this formulation against lipid peroxidation caused by paraquat (PQ). METHODS: The suspensions were prepared by interfacial deposition of the polymer and were physiochemically characterized. C. elegans N2 wild type and transgenic worm CF1553, muls84 [sod-3p::gfp; rol6(su1006)] were obtained from the Caenorhabditis Genetics Center (CGC). The worms were divided into 5 groups: Control, PQ 0.5 mM, PQ 0.5 mM + Mel-LNC 10 µg/mL, PQ + unloaded lipid-core nanocapsules (LNC), and PQ + free melatonin (Mel) 10 µg/mL. The lipid peroxidation was assessed through thiobarbituric acid (TBARS) levels and the fluorescence levels of the transgenic worms expressing GFP were measured. RESULTS: The LNC and Mel-LNC presented a bluish-white liquid, with pH values of 5.56 and 5.69, respectively. The zeta potential was - 6.4 ± 0.6 and - 5.2 ± 0.2, respectively. The mean particle diameter was 205 ± 4 nm and 203 ± 3 nm, respectively. The total melatonin content was 0.967 mg/ml. The TBARS levels were significantly higher in the PQ group when compared to the control group (p < 0.001). Mel-LNC reduced TBARS levels to similar levels found in the control group. Moreover, only Mel-LNC significantly enhanced the SOD-3 expression (p < 0.05). Mel-LNC was capable of protecting C. elegans from lipid peroxidation caused by PQ and this was not observed when free melatonin was used. Moreover, Mel-LNC increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3, demonstrating a possible mechanism of protection from PQ-induced damage. CONCLUSION: These findings demonstrated that melatonin, when associated with nanocapsules, had improved antioxidant properties and the protective activity against PQ-induced lipid peroxidation could be associated with the activation of antioxidant enzymes by Mel-LNC in C. elegans.


Subject(s)
Antioxidants/pharmacology , Caenorhabditis elegans/drug effects , Drug Carriers/chemistry , Lipid Peroxidation/drug effects , Melatonin/pharmacology , Nanocapsules/chemistry , Paraquat/toxicity , Superoxide Dismutase/genetics , Animals , Antioxidants/chemistry , Caenorhabditis elegans/enzymology , Drug Compounding , Lipids/chemistry , Melatonin/chemistry , Particle Size
19.
BMC Pharmacol Toxicol ; 20(Suppl 1): 75, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31852532

ABSTRACT

BACKGROUND: Gasoline is a complex mixture of saturated and unsaturated hydrocarbons, in which aromatic compounds, such as BTX (benzene, toluene, and xylene) feature as the main constituents. Simultaneous exposure to these aromatic hydrocarbons causes a significant impact on benzene toxicity. In order to detect early alterations caused in gasoline station attendants exposed to BTX compounds, immunological, inflammatory, and oxidative stress biomarkers were evaluated. METHODS: A total of 66 male subjects participated in this study. The gasoline station attendants (GSA) group consisted of 38 gasoline station attendants from Rio Grande do Sul, Brazil. The non-exposed group consisted of 28 subjects who were non-smokers and who had no history of occupational exposure. Environmental and biological monitoring of BTX exposure was performed using blood and urine. RESULTS: The GSA group showed increased BTX concentrations in relation to the non-exposed group (p < 0.001). The GSA group showed elevated protein carbonyl (PCO) levels and pro-inflammatory cytokines, decreased expression of CD80 and CD86 in monocytes, and reduced glutathione S-transferase (GST) activity compared to the non-exposed group (p < 0.05). BTX levels and trans,trans-muconic acid levels were positively correlated with pro-inflammatory cytokines and negatively correlated with interleukin-10 contents (p < 0.001). Increased levels of pro-inflammatory cytokines were accompanied by increased PCO contents and decreased GST activity (p < 0.001). Furthermore, according to the multiple linear regression analysis, benzene exposure was the only factor that significantly contributed to the increased pro-inflammatory cytokines (p < 0.05). CONCLUSIONS: Taken together, these findings show the influence of exposure to BTX compounds, especially benzene, on the immunological, inflammatory, and oxidative stress biomarkers evaluated. Furthermore, the data suggest the relationship among the evaluated biomarkers of effect, which could contribute to providing early signs of damage to biomolecules in subjects occupationally exposed to BTX compounds.


Subject(s)
Air Pollutants, Occupational/analysis , Benzene Derivatives/urine , Biological Monitoring/methods , Cytokines/urine , Environmental Biomarkers/immunology , Occupational Exposure/analysis , Oxidative Stress/drug effects , Adult , Air Pollutants, Occupational/adverse effects , B7-1 Antigen/blood , B7-1 Antigen/urine , B7-2 Antigen/blood , B7-2 Antigen/urine , Benzene Derivatives/toxicity , Brazil , Cytokines/blood , Environmental Biomarkers/drug effects , Humans , Male , Occupational Exposure/adverse effects , Oxidative Stress/immunology , Protein Carbonylation/drug effects
20.
Environ Sci Pollut Res Int ; 26(2): 1304-1314, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30421373

ABSTRACT

Formaldehyde (FA) is a carcinogenic aldehyde illegally added to creams as a hair straightening agent for the Brazilian blowout (BB). This study aimed to investigate the possible effects of occupational exposure to FA on global DNA methylation in salon workers with different exposure levels. FA exposure was monitored using environmental and biological measurements. The study included 49 salon workers divided by FA levels in the workplace into group A (FA < 0.01 ppm; n = 8), group B (0.03 ppm < FA < 0.06 ppm; n = 15), and group C (0.08 ppm < FA < 0.24 ppm; n = 26). The global DNA methylation levels were 3.12%, 4.55%, and 4.29% for groups A, B, and C, respectively, with statistically higher values for groups B and C compared to group A (p = 0.002). A correlation was found between FA in passive samplers and global DNA methylation (rs = 0.307, p = 0.032). Additionally, when only taking into account the hairdressers that performed the BB on clients instead of the whole group, a stronger correlation was observed between FA in personal passive samplers and global DNA methylation (rs = 0.764, p = 0.006). For the first time, an increase in DNA methylation was observed in subjects occupationally exposed to FA. In conclusion, our results indicated that even low levels of FA exposure could cause a disturbance in DNA methylation, leading to epigenetic changes, which is associated with cancer development. These data suggest a possible contribution of FA to cancer development through occupational exposure.


Subject(s)
Air Pollutants, Occupational/analysis , DNA Methylation , Formaldehyde/analysis , Occupational Exposure/analysis , Beauty , Brazil , Humans , Occupational Exposure/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...