Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Prev Interv Community ; : 1-16, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107239

ABSTRACT

How do mental health practitioners and educators support child migrants, child immigrants, child refugees, and their families? This article examines the scope of current interventions for these populations. A meta-analysis of interventions used in schools over the last two decades is discussed to provide an overview of the current evidence base in this area worldwide. Recommendations are made to facilitate the application of these interventions to support child-migrants, child-immigrants, and child-refugees in the schools, and their families.

2.
Nature ; 565(7738): 234-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30568305

ABSTRACT

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young Adult
3.
J Pathol ; 242(1): 24-38, 2017 05.
Article in English | MEDLINE | ID: mdl-28035683

ABSTRACT

Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colonic Neoplasms/genetics , Glioblastoma/genetics , Intranuclear Inclusion Bodies/metabolism , Protein Aggregation, Pathological/genetics , Proteostasis Deficiencies/genetics , Tumor Suppressor Protein p53/genetics , Biopsy , Cell Line, Tumor , Colonic Neoplasms/complications , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytoplasm/metabolism , Glioblastoma/complications , Glioblastoma/metabolism , Glioblastoma/pathology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Humans , Kaplan-Meier Estimate , Mutation , Protein Aggregation, Pathological/etiology , Protein Aggregation, Pathological/metabolism , Proteostasis Deficiencies/etiology , Proteostasis Deficiencies/metabolism , Receptors, sigma/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Cancer Genet ; 209(7-8): 321-30, 2016.
Article in English | MEDLINE | ID: mdl-27425854

ABSTRACT

Astroblastomas are rare primary brain tumors, diagnosed based on histologic features. Not currently assigned a WHO grade, they typically display indolent behavior, with occasional variants taking a more aggressive course. We characterized the immunohistochemical characteristics, copy number (high-resolution array comparative genomic hybridization, OncoCopy) and mutational profile (targeted next-generation exome sequencing, OncoPanel) of a cohort of seven biopsies from four patients to identify recurrent genomic events that may help distinguish astroblastomas from other more common high-grade gliomas. We found that tumor histology was variable across patients and between primary and recurrent tumor samples. No common molecular features were identified among the four tumors. Mutations commonly observed in astrocytic tumors (IDH1/2, TP53, ATRX, and PTEN) or ependymoma were not identified. However one case with rapid clinical progression displayed mutations more commonly associated with GBM (NF1(N1054H/K63)*, PIK3CA(R38H) and ERG(A403T)). Conversely, another case, originally classified as glioblastoma with nine-year survival before recurrence, lacked a GBM mutational profile. Other mutations frequently seen in lower grade gliomas (BCOR, BCORL1, ERBB3, MYB, ATM) were also present in several tumors. Copy number changes were variable across tumors. Our findings indicate that astroblastomas have variable growth patterns and morphologic features, posing significant challenges to accurate classification in the absence of diagnostically specific copy number alterations and molecular features. Their histopathologic overlap with glioblastoma will likely confound the observation of long-term GBM "survivors". Further genomic profiling is needed to determine whether these tumors represent a distinct entity and to guide management strategies.


Subject(s)
Brain Neoplasms/genetics , Genome-Wide Association Study/methods , Neoplasm Recurrence, Local/genetics , Neoplasms, Neuroepithelial/genetics , Adult , Brain Neoplasms/pathology , Comparative Genomic Hybridization , DNA Mutational Analysis , Female , Gene Dosage , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasms, Neuroepithelial/pathology , Sequence Analysis, DNA
5.
JAMA Oncol ; 1(5): 662-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26181761

ABSTRACT

IMPORTANCE: Conclusive intraoperative pathologic confirmation of diffuse infiltrative glioma guides the decision to pursue definitive neurosurgical resection. Establishing the intraoperative diagnosis by histologic analysis can be difficult in low-cellularity infiltrative gliomas. Therefore, we developed a rapid and sensitive genotyping assay to detect somatic single-nucleotide variants in the telomerase reverse transcriptase (TERT) promoter and isocitrate dehydrogenase 1 (IDH1). OBSERVATIONS: This assay was applied to tissue samples from 190 patients with diffuse gliomas, including archived fixed and frozen specimens and tissue obtained intraoperatively. Results demonstrated 96% sensitivity (95% CI, 90%-99%) and 100% specificity (95% CI, 95%-100%) for World Health Organization grades II and III gliomas. In a series of live cases, glioma-defining mutations could be identified within 60 minutes, which could facilitate the diagnosis in an intraoperative timeframe. CONCLUSIONS AND RELEVANCE: The genotyping method described herein can establish the diagnosis of low-cellularity tumors like glioma and could be adapted to the point-of-care diagnosis of other lesions that are similarly defined by highly recurrent somatic mutations.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Glioma/genetics , Glioma/surgery , Isocitrate Dehydrogenase/genetics , Molecular Diagnostic Techniques , Polymorphism, Single Nucleotide , Telomerase/genetics , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Female , Frozen Sections , Glioma/enzymology , Glioma/pathology , Humans , Immunohistochemistry , Intraoperative Period , Magnetic Resonance Imaging , Male , Neoplasm Grading , Polymerase Chain Reaction , Predictive Value of Tests , Promoter Regions, Genetic , Time Factors , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...