Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(17): 7541-7548, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38623896

ABSTRACT

Thermodynamics and kinetics of hydroxide ion binding to iron tetraphenylporphyrin (TPPFe) at different redox states is investigated by electrochemistry and UV-vis spectroscopy. The reduction of initial TPPFe(III) drastically decreases the binding affinity of hydroxide ions. An activation-driving force correlation is revealed showing that the strongest the binding affinity, the largest the association rate constant and vice versa. Comparison with chloride ions shows that hydroxide ions are stronger ligands for iron tetraphenylporphyrin. However, kinetic data indicate that coordination and decoordination of chloride ions is intrinsically faster than coordination and decoordination of hydroxide ions. Finally, the consequence of hydroxide ion binding dynamics when TPPFe is used as a molecular catalyst for electrochemical reactions liberating hydroxides is discussed in the framework of self-modulation of catalytic processes.

3.
Inorg Chem ; 61(40): 16072-16080, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36166597

ABSTRACT

Heterogenization of molecular catalysts on (photo)electrode surfaces is required to design devices performing processes enabling to store renewable energy in chemical bonds. Among the various strategies to immobilize molecular catalysts, direct chemical bonding to conductive surfaces presents some advantages because of the robustness of the linkage. When the catalyst is, as it is often the case, a transition metal complex, the anchoring group has to be connected to the complex through the ligands, and an important question is thus raised on the influence of this function on the redox and on the catalytic properties of the complex. Herein, we analyze the effect of conjugated and non conjugated substituents, structurally close to anchoring functions previously used to immobilize a rhenium carbonyl bipyridyl molecular catalyst for supported CO2 electroreduction. We show that carboxylic ester groups, mimicking anchoring the catalyst via carboxylate binding to the surface, have a drastic effect on the catalytic activity of the complex toward CO2 electroreduction. The reasons for such an effect are revealed via a combined spectro-electrochemical analysis showing that the reducing equivalents are mainly accumulated on the electron-withdrawing ester on the bipyridine ligand preventing the formation of the rhenium(0) center and its interaction with CO2. Alternatively, alkyl-phosphonic ester substituents, not conjugated with the bpy ligand, mimicking anchoring the catalyst via phosphonate binding to the surface, allow preserving the catalytic activity of the complex.

4.
Chem Sci ; 12(38): 12726-12732, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703559

ABSTRACT

Homogeneous electrochemical catalysis of N2O reduction to N2 is investigated with a series of organic catalysts and rhenium and manganese bipyridyl carbonyl complexes. An activation-driving force correlation is revealed with the organic species characteristic of a redox catalysis involving an outer-sphere electron transfer from the radical anions or dianions of the reduced catalyst to N2O. Taking into account the previously estimated reorganization energy required to form the N2O radical anions leads to an estimation of the N2O/N2O˙- standard potential in acetonitrile electrolyte. The direct reduction of N2O at a glassy carbon electrode follows the same quadratic activation driving force relationship. Our analysis reveals that the catalytic effect of the mediators is due to a smaller reorganization energy of the homogeneous electron transfer than that of the heterogeneous one. The physical effect of "spreading" electrons in the electrolyte is shown to be unfavorable for the homogeneous reduction. Importantly, we show that the reduction of N2O by low valent rhenium and manganese bipyridyl carbonyl complexes is of a chemical nature, with an initial one-electron reduction process associated with a chemical reaction more efficient than the simple outer-sphere electron transfer process. This points to an inner-sphere mechanism possibly involving partial charge transfer from the low valent metal to the binding N2O and emphasizes the differences between chemical and redox catalytic processes.

5.
Chem Commun (Camb) ; 55(90): 13598-13601, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31657370

ABSTRACT

TiO2 nanoparticles are successively functionalized with [Mn(κ2N1,N2-ttpy)(CO)3Br] as catalyst and [Ru(bpy)3]2+ as photosensitizer to yield RuII/TiO2/MnI. Under continuous irradiation at 470 nm and in the presence of a sacrificial electron donor, this triad reduces CO2 to HCOOH (TONmax = 27) with 100% selectivity.

6.
Chem Commun (Camb) ; 50(19): 2539-42, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24463775

ABSTRACT

Mn(I) carbonyl terpyridyl complexes have been synthesized and characterized. The tricarbonyl derivative exhibits interesting behaviors for controlled CO-release by both thermal and photosynthetic pathways.


Subject(s)
Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Coordination Complexes/radiation effects , Light , Manganese/radiation effects
7.
Angew Chem Int Ed Engl ; 53(1): 240-3, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24259443

ABSTRACT

A key intermediate in the electroconversion of carbon dioxide to carbon monoxide, catalyzed by a manganese tris(carbonyl) complex, is characterized. Different catalytic pathways and their potential reaction mechanisms are investigated using a large range of experimental and computational techniques. Sophisticated spectroscopic methods including UV/Vis absorption and pulsed-EPR techniques (2P-ESEEM and HYSCORE) were combined together with DFT calculations to successfully identify a key intermediate in the catalytic cycle of CO2 reduction. The results directly show the formation of a metal-carboxylic acid-CO2 adduct after oxidative addition of CO2 and H(+) to a Mn(0) carbonyl dimer, an unexpected intermediate.

8.
Langmuir ; 28(32): 11779-89, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22809216

ABSTRACT

Reaction of dimeric [Rh(II)(2)(phen)(2)(µ-OAc)(2)(MeCN)(2)](BF(4))(2) (phen =1,10-phenanthroline) with pyrazine (pz) in a 1:2 ratio leads to the new 1-D metal-metal-bonded coordination oligomer {[Rh(II)(2)(phen)(2)(µ-OAc)(2)(pz)](BF(4))(2)}(n) (Rh-Rhpz)(n) (1), where each Rh atom of the dimeric unit (Rh-Rh) is coordinated in the equatorial plane to a nitrogen atom of a rigid and linear bifunctionalized organic linker (pz). Single X-ray diffraction analysis reveals the 1-D straight oligomeric chain structure (molecular wire, MW) consists of alternating (Rh-Rh) units and pz linking ligands with free BF(4)(-) as counteranions, and each metal center has a slightly distorted octahedral arrangement. The presence of accessible labile MeCN groups on both ends of these MWs ("free ends") enables functionalization of a 4-mercaptopyridine-gold coordinating platform (Au/MP) to form in one step a layer of coordination oligomer (Au/MP(Rh-Rhpz)(n); n ≈ 50). Furthermore (Rh-Rhpz)(n) (n = 1-6) MWs were grafted to Au/MP surfaces by a conventional step-by-step assembly construction involving coordination reactions between the Rh dimer ([Rh(2)(phen)(2)(µ-OAc)(2)(MeCN)(2)](BF(4))(2) (2)) and pz. A detailed physicochemical study (UV-vis, RAIR, QCM-D, ellipsometry, contact angle measurements, as well as impedance spectroscopy and cyclic voltammetry) has been made during both assembly methods to characterize the resulting surface-anchored coordination molecular wire (CMW) layers (Au/MP(Rh-Rhpz)(n)). The results indicate that the immobilized molecular assemblies (MAs) were successfully fabricated using both methods of assembly. The efficiency of the two methods is discussed.

9.
Angew Chem Int Ed Engl ; 50(42): 9903-6, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21922614

ABSTRACT

Manganese at work: carbonyl bipyridyl complexes based on manganese, a non-noble abundant and inexpensive metal, have been proved to be excellent molecular catalysts for the selective electrochemical reduction of CO(2) to CO under mild conditions. Another advantage of manganese complexes over rhenium complexes is that these catalysts operate at markedly less overpotential (0.40 V gain).


Subject(s)
Carbon Dioxide/chemistry , Organometallic Compounds/chemistry , Catalysis , Molecular Conformation , Oxidation-Reduction
10.
Chemistry ; 17(15): 4313-22, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21374746

ABSTRACT

Optical excitation in the visible region of trans-(Cl)-[Os(bpy)(CO)(2)Cl(2)] (bpy=2,2'-bipyridine; C1) and trans-(Cl)-[Os(dmbpy)(CO)(2)Cl(2)] (dmbpy=4,4'-dimethyl 2,2'-bipyridine; C2) is known to induce the common CO dissociation reaction. However, the quantum yield of the reactions is less than 0.15, although C1 and C2 display pronounced photoluminescence in the visible region at room temperature with a lifetime of few tens of nanoseconds. Taking into account the characteristics of their emitting state, we have investigated the capability of C1 and C2 to act as a photosensitiser in redox reactions in different solvents (MeCN, PrCN and DMF). The efficient oxidation and reduction of both complexes under continuous irradiation in the presence of a sacrificial electron acceptor or donor is reported here. The photo-induced transformations and the nature of the resulting compounds were analysed by UV/Vis and IR spectroscopies and cyclic voltammetry. Photo-induced oxidation of C1 and C2 leads to the corresponding monocarbonyl oxidised species, whereas photo-induced reduction under argon leads mainly to the formation of the corresponding Os-bonded molecular wires P1 and P2 after exchange of two electrons associated with the loss of two chloro ligands. The chemical yield of the latter reaction (around 65%) becomes quantitative by adding [Ru(bpy)(3)](2+) as an external redox photosensitiser. This behaviour has been used to photocatalyse the two electron, two proton conversion of CO(2) to CO. Turnover numbers (TON) of 11.5 and 19.5 have been obtained respectively for C1 and C2 after 4.5 h of irradiation under CO(2) in DMF with triethanolamine as the electron donor. TON can be slightly increased by adding [Ru(bpy)(3)](2+) to the solution.

11.
Phys Chem Chem Phys ; 12(47): 15428-35, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20976319

ABSTRACT

The metal bonded ruthenium polymer [Ru(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine) is known to be a very promising and efficient solid material for catalysis applications, such as carbon dioxide electroreduction in pure aqueous media and the water-gas shift reaction. It also exhibits potential application for molecular electronics as a conductive molecular wire. The insolubility and relative air-sensitivity of [Ru(0)(bpy)(CO)(2)](n) as well as the lack of monocrystals make its structural characterization very challenging. A first approach to determine the structure of this polymer has been obtained by ab initio X-ray powder diffraction, based on the known X-ray structure of [Ru(CO)(4)](n). In order to refine this structure, a non-conventional solid-state NMR study was performed. The results of this study are presented here. The comparison of high-resolution solid-state (13)C NMR spectra of the polymer with those of the corresponding monomeric [Ru(bpy)(CO)(2)Cl(2)] or dimeric [Ru(bpy)(CO)(2)Cl](2) precursor complexes has shown a clear shift and splitting of carbonyl ligand resonances, which turns out to be linearly correlated with the redox state of the Ru (ii, i or 0, respectively). Bipyridine resonances are also affected but in a non-trivial way. Finally, in the case of the dimer, it was found that the CO peak splitting (2.7 ppm) contains structural information, e.g. the ligand staggering angle. Based on DFT chemical shift calculations on corresponding model molecules (n = 1-2), all the described experimental observations could be reproduced. Moreover, upon extending these calculations to models of increasing length (n = 3-5), it turns out that information about the staggering angle between successive ligands is actually retained in the CO NMR computed peak splitting. Turning back to experiments, the CO broad signal measured for the wire could be decomposed into a major component (at 214.9 ppm) assigned to the internal CO ligands, and a minor doublet component (216.9 and 218.1 ppm) whose splitting (2.8 ppm) contains the staggering angle information. Finally, from the relative integrals of these three components, expected to be in the ratio 1 : 1 : n-2, it was possible to tentatively estimate the length n of the polymetallic wire (n = 7).

12.
Inorg Chem ; 48(17): 8233-44, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19655717

ABSTRACT

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru(0)(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru(0)(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru(II)(CO)(MeCN)(bpy)Cl(2)] (in PrCN) and mer-[Ru(II)(CO)(bpy)Cl(3)](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru(II)(CO)(MeCN)(bpy(*-))Cl(2)](-) and [Ru(II)(CO)(bpy(*-))Cl(3)](2-), respectively. Both [bpy(*-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis) has revealed that the charged polymer [{Ru(0)(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru(0)(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(*-)]-containing species.

13.
Dalton Trans ; (43): 5891-6, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19082044

ABSTRACT

A novel approach for the synthesis of heteroleptic tris(diimine) ruthenium complexes is reported. This strategy is based on the electrochemical or chemical reduction of Ru(iii) precursor complexes in MeCN such as [Ru(bpy)(X)Cl(3)] (bpy = 2,2'-bipyridine; X = MeCN () or MeOH ()). This method allows the preparation with high yield of the highly valuable [Ru(bpy)(MeCN)(2)Cl(2)] synthon (). The full characterization (mass spectrometry, (1)H NMR, absorption spectroscopy and electrochemistry) of [Ru(bpy)(MeCN)(2)Cl(2)] as a pure compound is reported for the first time. Indeed the later was previously only obtained in mixtures with the corresponding tris(acetonitrile) derivative: [Ru(bpy)(MeCN)(3)Cl]Cl. (1)H NMR analysis of indicates that its structure corresponds to the cis(Cl)-cis(MeCN) isomer form. [Ru(bpy)(MeCN)(2)Cl(2)] has been further used to synthesize [Ru(bpy)(Me(2)bpy)Cl(2)] (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine) for which X-ray analysis indicates that the two chloride ligands are also in cis position.

14.
Dalton Trans ; (43): 5911-21, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19082047

ABSTRACT

A series of new mononuclear and dinuclear platinum(ii) compounds based on two bipyridyl systems, linked by an alkyl chain {1,2-bis[4-(4'-methyl-2,2'-bipyridinyl)]ethane, L2, (a), and 1,6-bis[4-(4'-methyl-2,2'-bipyridinyl)]hexane, L6, (b)} have been synthesized and characterized by IR and multinuclear and multidimensional NMR spectroscopy. The coordination sphere of the complexes, designed to give intercalating and/or covalent interactions with DNA, is completed only by exchangeable (Cl(-), I(-) or H(2)O) and/or not leaving (chelate ethylenediamine, en) saturating ligands. Quenching of the DNA-ethidium fluorescence was performed in order to verify the intercalating capability of the water soluble compounds. Furthermore, the in vitro cytotoxicity of all water soluble complexes has been assessed with respect to cisplatin on platinum-sensitive human endometrium (HeLa) and platinum-resistant human breast (MCF-7) cancer cell lines.


Subject(s)
Chelating Agents/chemical synthesis , Chelating Agents/toxicity , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/toxicity , Nitrogen/chemistry , Platinum Compounds/chemical synthesis , Platinum Compounds/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Chelating Agents/chemistry , Heterocyclic Compounds/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Platinum Compounds/chemistry
15.
Dalton Trans ; (16): 2149-56, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18398541

ABSTRACT

An original electrochemical synthesis of {[Rh4(mu-OOCCH3)4(phen)4]2+}n (1) molecular wire films from a solution of binuclear bridged Rh complexes [Rh2(mu-OOCCH3)2(phen)2(X)2](Y)2 (X = H2O, Y = BF4(-) (2a) and X = CH3CN, Y = BF4(-) (2b)) in MeCN electrolyte is reported. UV-vis spectroscopy and quartz crystal microbalance electrochemical coupled techniques have been used to demonstrate the electrosynthesis process. The resulting polymetallic compound has been characterized on the basis of its physicochemical properties, which have been compared with those of a chemically synthesized sample. Furthermore, according to EPR, 1H NMR and electrochemical behaviour, the mechanism of the oxidation of this polymetallic wire, containing mixed valent rhodium centers and alternatively acetate bridged Rh-Rh bonds, has been investigated in detail.

17.
Dalton Trans ; (30): 3314-24, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17893778

ABSTRACT

A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.

18.
Inorg Chem ; 43(22): 7250-8, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15500366

ABSTRACT

IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os(II)(bpy)(CO)(2)Cl(2)]. The one-electron-reduced form, [Os(II)(bpy(.)(-))(CO)(2)Cl(2)](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [[Os(0)(bpy(*)(-))(CO)(2)](-)](n), the electron-rich electrocatalyst of CO(2) reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os(0)(bpy)(CO)(MeCN)(2)Cl](n).

19.
Inorg Chem ; 43(5): 1638-48, 2004 Mar 08.
Article in English | MEDLINE | ID: mdl-14989656

ABSTRACT

Reaction of the unsymmetrical phenol ligand 2-((bis(2-pyridylmethyl)amino)methyl)-6-(((2-pyridylmethyl)benzylamino)methyl)-4-methylphenol (HL-Bn) or its 2,6-dichlorobenzyl analogue (HL-BnCl(2)) with Fe(H(2)O)(6)(ClO(4))(2) in the presence of disodium m-phenylenedipropionate (Na(2)(mpdp)) followed by exposure to atmosphere affords the diiron(II,III) complexes [Fe(2)(L-Bn)(mpdp)(H(2)O)](ClO(4))(2) and [Fe(2)(L-BnCl(2))(mpdp)(CH(3)OH)](ClO(4))(2), respectively. The latter complex has been characterized by X-ray crystallography. It crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.3095(14) A, b = 20.1073(19) A, c = 19.4997(19) A, alpha = 90 degrees, beta = 94.471(2) degrees, gamma = 90 degrees, V = 5202.6(9) A(3), and Z = 4. The structure of the compound is very similar to that of [Fe(2)(L-Bn)(mpdp)(H(2)O)](BPh(4))(2) determined earlier, except for the replacement of a water by a methanol on the ferrous site. Magnetic measurements of [Fe(2)(L-Bn)(mpdp)(H(2)O)](BPh(4))(2) reveal that the two high-spin Fe ions are moderately antiferromagnetically coupled (J = -3.2(2) cm(-)(1)). Upon dissolution in acetonitrile the terminal ligand on the ferrous site is replaced by a solvent molecule. The acetonitrile-water exchange has been investigated by various spectroscopic techniques (UV-visible, NMR, Mössbauer) and electrochemistry. The substitution of acetonitrile by water is clearly evidenced by Mössbauer spectroscopy by a reduction of the quadrupole splitting value from 3.14 to 2.41 mm/s. In addition, it causes a 210 mV downshift of the oxidation potential of the ferrous site and a similar reduction of the stability domain of the mixed-valence state. Exhaustive electrolysis of a solution of [Fe(2)(L-Bn)(mpdp)(H(2)O)](2+) shows that the aqua diferric species is not stable and undergoes a chemical reaction which can be partly reversed by reduction to the mixed-valent state. This and other electrochemical observations suggest that upon oxidation of the diiron center to the diferric state the aqua ligand is deprotonated to a hydroxo. This hypothesis is supported by Mössbauer spectroscopy. Indeed, this species possesses a large quadrupole splitting value (DeltaE(Q) >or= 1.0 mm.s(-)(1)) similar to that of analogous complexes with a terminal phenolate ligand. This study illustrates the drastic effects of aqua ligand exchange and deprotonation on the electronic structure and redox potentials of diiron centers.

20.
Inorg Chem ; 42(3): 750-60, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12562189

ABSTRACT

Reactions of the unsymmetrical phenol ligand 2-(bis(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol with Mn(OAc)(2).4H(2)O or Mn(H(2)O)(6)(ClO(4))(2) in the presence of NaOBz affords the dimanganese(II) complexes 1(CH(3)OH), [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)), and 2(H(2)O), [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), respectively. On the other hand, reaction of the ligand with hydrated manganese(III) acetate furnishes the mixed-valent derivative 3(H(2)O), [Mn(2)(L)(OAc)(2)(H(2)O)](ClO(4))( 2). The three complexes have been characterized by X-ray crystallography. 1(CH(3)OH) crystallizes in the monoclinic system, space group P2(1)/c, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 2(H(2)O) crystallizes in the monoclinic system, space group P2(1)/n, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 3(H(2)O) crystallizes in the monoclinic system, space group P2(1)/c, with a = 11.144(6) A, b = 18.737(10) A, c = 23.949(13) A, alpha = 90 degrees, beta = 95.910(10) degrees, gamma = 90 degrees, V = 4974(5) A(3), and Z = 4. Magnetic measurements revealed that the three compounds exhibit very similar magnetic exchange interactions -J = 4.3(3) cm(-)(1). They were used to establish tentative magneto-structural correlations which show that for the dimanganese(II) complexes -J decreases when the Mn-O(phenoxo) distance increases as expected from orbital overlap considerations. For the dimanganese(II,III) complexes, crystallographic results show that the Mn(II)-O(phenoxo) and Mn(III)-O(phenoxo) bond lengths are inversely correlated. An interesting magneto-structural correlation is found between -J and the difference between these bond lengths, delta(Mn)(-)(O) = d(Mn)()II(-)(O) - d(Mn)()III(-)(O): the smaller this difference, the larger -J. Electrochemical studies show that the mixed-valence state is favored in 1-3 by ca. 100 mV with respect to analogous complexes of symmetrical ligands, owing to the asymmetry of the electron density as found in the analogous diiron complexes.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemical synthesis , Phenols/chemical synthesis , Crystallography, X-Ray , Electrochemistry , Electron Spin Resonance Spectroscopy , Ligands , Molecular Conformation , Molecular Structure , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...