Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 69(8): 1695-709, 2008 May.
Article in English | MEDLINE | ID: mdl-18371995

ABSTRACT

We have investigated the accumulation of nickel in a hyperaccumulating plant from the Brassicacae family Leptoplax emarginata (Boiss.) O.E. Schulz. Two supplementary hyperaccumulating plants, which have been the subject of a high number of publications, Alyssum murale Waldst. & Kit and Thlaspi caerulescens J.&C. Presl, and a nonaccumulating species Aurinia saxatilis were also studied for reference. The plants were grown during 4 months in specific rhizoboxes with Ni-bearing minerals as a source of nickel. Nickel speciation was analyzed through X-ray absorption spectroscopy at Ni K-edge (X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy) in the different parts of the plants (leaves, stems and roots) and compared with aqueous solutions containing different organo-Ni(II) complexes. Carboxylic acids (citrate, malate) appeared as the main ligands responsible of nickel transfer within those plants. Citrate was found as the predominant ligand for Ni in stems of Leptoplax and Alyssum, whereas in leaves of the three plants, malate appeared as the chelating organic acid of accumulated metal. Histidine could not be detected either in leaves, stems nor roots of any studied plant sample.


Subject(s)
Brassicaceae/chemistry , Chelating Agents/chemistry , Nickel/chemistry , Thlaspi/chemistry , Brassicaceae/metabolism , Chelating Agents/metabolism , Citric Acid/analysis , Citric Acid/chemistry , Glutamic Acid/analysis , Glutamic Acid/chemistry , Ligands , Malates/analysis , Malates/chemistry , Molecular Structure , Nickel/metabolism , Spectrophotometry , Thlaspi/metabolism , X-Rays
2.
Int J Phytoremediation ; 7(4): 323-35, 2005.
Article in English | MEDLINE | ID: mdl-16463544

ABSTRACT

Leptoplax emarginata and Bornmuellera tymphaea are nickel hyperaccumulators of the Brassicaceae family endemic to serpentine soils in Greece. The aims of this work were to compare the growth and uptake behavior of these plants with the Ni hyperaccumulator species Thlaspi caerulescens and Alyssum murale, and to evaluate their effect on soil Ni availability. Plants were grown for 3 mo on three soils that differ in Ni availability. Ni availability in soils was measuredby isotopic exchange kinetics and DTPA-TEA extractions. Results showed that L. emarginata produced significantly more biomass than other plants. On the serpentine soil, B. tymphaea showed the highest Ni concentration in shoots. However, Niphytoextraction on the three soils was maximal with L. emarginata. The high initial Ni availability of soil Serp (470.5 mg kg(-1)) was the main explanation for the high Ni concentrations measured in plant shoots grown on this soil, compared to those grown on soils Calc and Silt A. murale was the least efficient in reducing Ni availability on the serpentine soil L. emarginata appeared as the most efficient species for Ni phytoextraction and decrease of the Ni available pool.


Subject(s)
Brassicaceae/metabolism , Nickel/metabolism , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...